Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.

Slides:



Advertisements
Similar presentations
February 14, 2002 Putting Linear Programs into standard form
Advertisements

Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Linear Programming Problem
Operation Research Chapter 3 Simplex Method.
SIMPLEX METHOD FOR LP LP Model.
Introduction to Algorithms
Chapter 6 Linear Programming: The Simplex Method
Dr. Sana’a Wafa Al-Sayegh
Chapter 6 Linear Programming: The Simplex Method
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan/ Department of Mathematics and CS/ Linear Programming in two dimensions:
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
Approximation Algorithms
5.6 Maximization and Minimization with Mixed Problem Constraints
D Nagesh Kumar, IIScOptimization Methods: M3L1 1 Linear Programming Preliminaries.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Computer Algorithms Mathematical Programming ECE 665 Professor Maciej Ciesielski By DFG.
6  Graphing Systems of Linear Inequalities in Two Variables  Linear Programming Problems  Graphical Solutions of Linear Programming Problems  The Simplex.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
LINEAR PROGRAMMING SIMPLEX METHOD.
Linear Programming - Standard Form
Linear Programming Chapter 13 Supplement.
Chapter 6 Linear Programming: The Simplex Method
Simplex Algorithm.Big M Method
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Chapter 7 Linear Programming. 2 Linear Programming (LP) Problems Both objective function and constraints are linear. Solutions are highly structured.
Pareto Linear Programming The Problem: P-opt Cx s.t Ax ≤ b x ≥ 0 where C is a kxn matrix so that Cx = (c (1) x, c (2) x,..., c (k) x) where c.
Linear Programming Revised Simplex Method, Duality of LP problems and Sensitivity analysis D Nagesh Kumar, IISc Optimization Methods: M3L5.
4  The Simplex Method: Standard Maximization Problems  The Simplex Method: Standard Minimization Problems  The Simplex Method: Nonstandard Problems.
Mechanical Engineering Department 1 سورة النحل (78)
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm file Simplex2_AMII_05a_gr.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Part 3. Linear Programming 3.2 Algorithm. General Formulation Convex function Convex region.
(i) Preliminaries D Nagesh Kumar, IISc Water Resources Planning and Management: M3L1 Linear Programming and Applications.
 LP graphical solution is always associated with a corner point of the solution space.  The transition from the geometric corner point solution to the.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Business Mathematics MTH-367 Lecture 14. Last Lecture Summary: Finished Sec and Sec.10.3 Alternative Optimal Solutions No Feasible Solution and.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
(iii) Simplex method - I D Nagesh Kumar, IISc Water Resources Planning and Management: M3L3 Linear Programming and Applications.
Chapter 4 The Simplex Algorithm and Goal Programming
An Introduction to Linear Programming
Linear Programming for Solving the DSS Problems
Lecture 3.
Linear programming Simplex method.
Chapter 4 Linear Programming: The Simplex Method
Chapter 3 The Simplex Method and Sensitivity Analysis
Part 3. Linear Programming
Linear Programming SIMPLEX METHOD.
Solving Linear Programming Problems: Asst. Prof. Dr. Nergiz Kasımbeyli
Linear programming Simplex method.
Presentation transcript:

Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery Lecture 6

Optimization of thermal processes2007/2008 Linear programming (LP) problems −General statement −Standard form of LP problem Example of LP problem −Transformation to standard form −Graphical solution method Pivotal reduction of a system of linear equations (Gauss-Jordan method) Concepts and theorems fundamental for the simplex method Simplex algorithm Overview

Optimization of thermal processes2007/2008 A linear programming (LP) problem Objective function Feasible region Feasible region is convex as the constraint functions are convex (linear). Here is the maximum

Optimization of thermal processes2007/2008 Standard form of a linear programming problem Minimize subject to the constraints cost coefficients All decision variables are nonnegative m linear equations known constants

Optimization of thermal processes2007/2008 How to transform any linear programming problem into the standard form? Maximize is equivalent to minimize If some of the decision variables are unrestricted in sign, we can express them as the difference of two nonnegative variables: where

Optimization of thermal processes2007/2008 How to transform any linear programming problem into the standard form? 3. An inequality constraint in the form: can be converted into the equality by adding a nonnegative slack variable: Slack variable 4. Similarly, for inequality constraints in the form: we substract a nonnegative surplus variable: Surplus variable

Optimization of thermal processes2007/2008 Example of linear programming problem Two products (denoted by I and II respectively) can be manufactured at the factory with the use of three ingredients: A, B and C. The amount of the ingredients required for one unit of each of the products is as follows: III A45 B52 C38 The total avalaible amount of the ingredients is: ABC The profit for product I is 5 zl per unit, for product II – 3 zl per unit. Maximize the profit.

Optimization of thermal processes2007/2008 Transformation to the standard form (example contd) Design vector Number of units of product I Number of units of product II Objective function (the profit) Constraints Standard form minimize Slack variables

Feasible region Optimization of thermal processes2007/2008 Graphical method of solution (example contd) Objective function surfaces optimum We are looking for the objective function surface representing the largest value, intersecting one of the extreme points (vertices) of the feasible region. Of course, this method is not very accurate and can be applied only to two dimensional problems (with two design variables). We definitely need a better and more general method.

Optimization of thermal processes2007/2008 How to solve a set of linear equations? (n equations, n unknowns) We can: multiply any equation by any non-zero constant add any two equations Using only these two operations we can eliminate a particular variable from all but one equations. This elimination is called pivot operation. For instance, we can eliminate x 2 : x 2 eliminated we pivot on this term

Optimization of thermal processes2007/2008 How to solve a set of linear equations? (n equations, n unknowns) Performing pivot operation on all variables we can solve the whole system of equations. This is Gauss-Jordan elimination. Canonical form From the canonical form the solution can be directly obtained as

Optimization of thermal processes2007/2008 Pivotal reduction of a general system of equations (m equations, n unknowns) Performing pivotal operations with respect to any set of m variables, say x 1, x 2,..., x m, we obtain: Canonical system with pivotal variables: x 1, x 2,..., x m Pivotal variablesNonpivotal or independent variables

Optimization of thermal processes2007/2008 Pivotal reduction of a general system of equations (m equations, n unknowns) One special solution can be deduced from the canonical system : This solution is called a basic solution. Thus, to obtain basic solution we: choose m pivotal variables; they are called basic variables; the set of basic variables is called a basis perform pivotal reduction with respect to the basic variables set the independent variables to zero; they are called nonbasic variables The importance of the basic solution stems from the fact that it corresponds to the extreme point (vertex) of a feasible region.

Optimization of thermal processes2007/2008 Some important theorems A region where constraints are satisfied (feasible region) in LP problem is a convex set. Convex sets a b Nonconvex (concave) sets For a convex set any segment line joining any two poins is also in the set. These points are outside. Extreme point (vertex) Vertex is a point in the convex set that does not lie on a line segment joing two other points of the set. The minimum of a linear function over a convex set is attained at a vertex of this set.

Optimization of thermal processes2007/2008 Some important theorems Feasible solution in LP problem is the solution that satisfies the constraints (see the standard form of LP problem): Equality constraints Nonnegativity conditions Basic feasible solution is basic solution that satisfies the nonnegativity conditions: Every basic feasible solution is an extreme point (vertex) of the convex set of feasible solutions. The minimum of a linear function over a convex set is attained at a vertex of this set. Looking for the optimal solution we just have to inspect basic feasible solutions. This is the basis of the simplex method

Optimization of thermal processes2007/2008 Motivation of the simplex method Given a system of linear equations corresponding to the constraints of the LP problem we can generate all basic solutions We pick only the feasible solutions (nonnegative variables) We calculate the value of the objective function for the given solution From obtained values we take the minimal one Unfortunetely, such procedure could be tedious and inefficient. The number of basic solutions to inspect is equal to: e.g. for n=20, m=10 we have basic solutions But many of these solutions are not feasible What we really need is a computational scheme that: examines a sequence of basic feasible solutions each of which corresponds to a lower value of f until minimum is reached

Nonbasic variables Basic variables (including -f) Optimization of thermal processes2007/2008 Simplex algorithm Start point – the constraints and the objective function in canonical form: Constraints Objective function Basic solution:

Optimization of thermal processes2007/2008 Simplex algorithm A basic feasible solution is an optimal solution with a minimum objective function value if all the cost coefficients are nonnegative. Why? We can write: These variables are presently zero and are constrained to be nonnegative. If all are positive then increasing any cannot decrease the value of the objective function Otherwise, we can improve the solution by increasing some of the nonbasic variables: we change the basis by introducing new variable x s for which:

Optimization of thermal processes2007/2008 Simplex algorithm Now, we can observe what happens to present basic variables, when we increase the new one: All the variables should stay nonnegative, so the largest value we are allowed to take is:

Optimization of thermal processes2007/2008 Simplex algorithm For this specific value we obtain: It is not difficult to see, that we can obtain the same result by single pivot operation on the element Thus, we reach another basic feasible solution with a new basis This new basic solution corresponds to a lower objective function value

Optimization of thermal processes2007/2008 Simplex algorithm - example Maximize subject to

Optimization of thermal processes2007/2008 Thank you for your attention