Crew: Pavel Babenkov Kirill Kalinkin Customized Stochastic Lot Scheduling Problem with Due Date Management.

Slides:



Advertisements
Similar presentations
Statistical Inventory control models I
Advertisements

Financial and Managerial Accounting Wild, Shaw, and Chiappetta Fifth Edition Wild, Shaw, and Chiappetta Fifth Edition McGraw-Hill/Irwin Copyright © 2013.
Scheduling.
Anthony Sulistio 1, Kyong Hoon Kim 2, and Rajkumar Buyya 1 Managing Cancellations and No-shows of Reservations with Overbooking to Increase Resource Revenue.
1 Inventory Control for Systems with Multiple Echelons.
6 | 1 Copyright © Cengage Learning. All rights reserved. Independent Demand Inventory Materials Management OPS 370.
Mehdi Kargahi School of ECE University of Tehran
Inventory Control IME 451, Lecture 3.
Chapter 11, Part A Inventory Models: Deterministic Demand
Supply Chain Management (SCM) Inventory management
Online Scheduling with Known Arrival Times Nicholas G Hall (Ohio State University) Marc E Posner (Ohio State University) Chris N Potts (University of Southampton)
Supply Chain Operations: Planning and Sourcing
LESSON 22: MATERIAL REQUIREMENTS PLANNING: LOT SIZING
MAE 552 – Heuristic Optimization Lecture 8 February 8, 2002.
Markov Decision Models for Order Acceptance/Rejection Problems Florian Defregger and Heinrich Kuhn Florian Defregger and Heinrich Kuhn Catholic University.
Chapter 2: Model of scheduling problem Components of any model: Decision variables –What we can change to optimize the system, i.e., model output Parameters.
MAE 552 – Heuristic Optimization Lecture 6 February 6, 2002.
presented by Zümbül Bulut
Inventory Models  3 Models with Deterministic Demand Model 1: Regular EOQ Model Model 2: EOQ with Backorder Model 3: EPQ with Production  2 Models with.
Ecole Polytechnique, Nov 7, Online Job Scheduling Marek Chrobak University of California, Riverside.
An overview of design and operational issues of kanban systems M. S. AKTÜRK and F. ERHUN Presented by: Y. Levent KOÇAĞA.
Supplement D Master Scheduling and Rough-cut Capacity Planning
Chapter 01 Introduction to Probability Models Course Focus Textbook Approach Why Study This?
Getting rid of stochasticity (applicable sometimes) Han Hoogeveen Universiteit Utrecht Joint work with Marjan van den Akker.
1 ISQA 459/559 Mellie Pullman Scheduling Shop Floor.
Using Simulated Annealing and Evolution Strategy scheduling capital products with complex product structure By: Dongping SONG Supervisors: Dr. Chris Hicks.
Scheduling – Day 2. Production Planning Process Process Planning Strategic Capacity Planning Aggregate Planning Master Production Scheduling Material.
CHAPTER 19 Scheduling Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.
MGMT Materials Management Systems Master Production Scheduling Chapter 3.
1 Chapter 7 Dynamic Job Shops Advantages/Disadvantages Planning, Control and Scheduling Open Queuing Network Model.

The MRP II Hierarchy. Long-Range Planning At the top of the hierarchy we have long-range planning. This involves three functions: resource planning,
A polynomial-time ambulance redeployment policy 1 st International Workshop on Planning of Emergency Services Caroline Jagtenberg R. van der Mei S. Bhulai.
Dimitrios Konstantas, Evangelos Grigoroudis, Vassilis S. Kouikoglou and Stratos Ioannidis Department of Production Engineering and Management Technical.
Self-Organizing Agents for Grid Load Balancing Junwei Cao Fifth IEEE/ACM International Workshop on Grid Computing (GRID'04)
Copyright © 2011 SYSPRO All rights reserved. Inventory Optimization User Group 17 th August 2011.
Trading Agent Competition (Supply Chain Management) and TacTex-05.
1 Software Testing (Part-II) Lecture Software Testing Software Testing is the process of finding the bugs in a software. It helps in Verifying and.
Supply Contract Allocation Gyana R. Parija Bala Ramachandran IBM T.J. Watson Research Center INFORMS Miami 2001.
Chapter 12 Inventory Models
Backup Agreements in Fashion Buying-The Value of Upstream Flexibility Eppen and Iyer (1997) Presented By: Hakan Umit 21 April 2003.
1 Inventory Control with Stochastic Demand. 2  Week 1Introduction to Production Planning and Inventory Control  Week 2Inventory Control – Deterministic.
Progress Report 2014/02/12. Previous in IPDPS’14 Energy-efficient task scheduling on per- core DVFS architecture ◦ Batch mode  Tasks with arrival time.
Hierarchy of Production Decisions
Mohamed Iqbal P Production and Inventory Control- Introduction (1) IEM Production and Inventory Control Introduction Mohamed Iqbal P.
1 Short Term Scheduling. 2  Planning horizon is short  Multiple unique jobs (tasks) with varying processing times and due dates  Multiple unique jobs.
“Make to order - Make to Stock Production Systems By: ÖNCÜ HAZIR.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 19 Markov Decision Processes.
Scheduling. Scheduling: The allocation of resources over time to accomplish specific tasks. Demand scheduling: A type of scheduling whereby customers.
© 2012 Pearson Prentice Hall. All rights reserved. Using Costs in Decision Making Chapter 3.
Process Analysis III Operations -- Prof. Juran. Outline Set-up times Lot sizes Effects on capacity Effects on process choice.
Loss-Bounded Analysis for Differentiated Services. By Alexander Kesselman and Yishay Mansour Presented By Sharon Lubasz
1 Inventory Control with Time-Varying Demand. 2  Week 1Introduction to Production Planning and Inventory Control  Week 2Inventory Control – Deterministic.
OPERATING SYSTEMS CS 3530 Summer 2014 Systems and Models Chapter 03.
Lead-Time and Price Quotation Oğuz Atan. Introduction Technological developments & Globalization Competition in business Customer satisfaction Introduction.
Algorithm Design Methods 황승원 Fall 2011 CSE, POSTECH.
Resource Planning Chapter 15.
SIMULATION EXAMPLES. Monte-Carlo (Static) Simulation Estimating profit on a sale promotion Estimating profit on a sale promotion Estimating profit on.
Scheduling.
LINEAR PROGRAMMING. Linear Programming Linear programming is a mathematical technique. This technique is applied for choosing the best alternative from.
1 ME Production Planning and Inventory Control.
Lecture 20 Review of ISM 206 Optimization Theory and Applications.
Supplementary Chapter B Optimization Models with Uncertainty
OPERATING SYSTEMS CS 3502 Fall 2017
Entrepreneurship Operations Presented By Mrs. Bowden.
Deadline Scheduling and Heavy tail distributionS
Introduction to Scheduling Chapter 1
Algorithm Design Methods
PRODUCTION PLANNING AND PROCESS PLANNING
Master Production Scheduling (MPS)
Presentation transcript:

Crew: Pavel Babenkov Kirill Kalinkin Customized Stochastic Lot Scheduling Problem with Due Date Management

Using Family Approach to Reduce Set-Ups The main goal of our project is study the make-to-order production environment with batch setup times, where customers orders are grouped into family-dependent batches to limit the loss of capacity due to setups. During the project we have covered the following: We extensively studied approaches for Customized Stochastic Lot Scheduling Problem (CSLSP) based on works by R. Germs and N.D. van Foreest. We extensively studied approaches for Due-Data Management – methods which are used to set up due dates for customers orders in a way to optimize production and satisfy customers. We simulated the CSLSP environment using own developed MatLab program and get results with various input conditions. We apply different current existing DDM methods and test performance of CSLSP under them. We develop a new heuristic DDM policy to combine with CSLSP and improve performance of two objects – reducing number of setups and increasing amount of satisfied orders by optimal setting of due dates – which lead to increasing of manufacturer profit in the long term.

Customized Stochastic Lot Scheduling Problem The main idea behind CSLSP is to group orders into families with similar production characteristics. This help to reduce amount of setups and total setup time, as a major setup time is incurred when production changes from one family to another. There are the following details of environment: The production situation at the supplier is modeled as a single machine that receives a stream of orders, which arrive according to a Poisson process. Production of each order is one time unit. There is a setup time after each family. The supplier is allowed to reject orders, but if he accepts an order he commits to delivering it in time. Consider a reference schedule: Initially schedule with defined families The schedule that results when a new family is created for a new order. The schedule that results after a new order of family 1 has been combined at position 3 at the end of the first batch.

Scheduling Actions At each arrival epoch it is necessary to decide whether to accept or reject the arriving order, and if it is accepted, it is required to decide where to insert the order in the schedule. For each new order, the following actions are considered: Combine - to combine an arriving order with a batch of its ‘kin’ in the schedule, with the aim of reducing the fraction of setups. Spawn - to ‘spawn’ a new generation of its family in a fashion similar to the EDD rule. = 8 = 11 Reject – not to accept an order. = 11

Greedy and Threshold Heuristics There are two heuristics which can be used to make scheduling decisions. Greedy – first tries to combine a new arriving order with a family. If combine is not possible, it tries to spawn a new family. However, this reduces opportunities for combination for other upcoming orders (blue and green). = 8 = 11 Threshold – first tries to combine a new arriving order with a family. If combine fails, choose spawn only if allowed and the due-date slack of the arriving order is greater than or equal to c after acceptance of the order: 0 ≤ c ≤ h = 11 = 13

Simulation Results We have created a simulation model in MatLab and executed various tests to better understand behavior of the threshold policy. Fraction of accepted jobs for different minimal slack requirements: Amount of setups for different minimal slacks: Minimum required slack Percentage of accepted orders Minimum required slack Amount of setups

Due Date Management (DDM) Policies Overview Due Date Management is dealing with quoting a lead time as the difference between the promised date of an order and its arrival time. Quoting unreliable lead times not only leads to potential loss of future business, but may also result in monetary penalties. There are some dimensions of a DDM problem: Offline vs. Online Single vs. Multiple Servers Preemptive vs. Non-preemptive Stochastic vs. Deterministic Processing Time Setup times/ costs Server Reliability Single vs. Multiple Classes of Customers Service Level Constraints Common vs. Distinct Due Dates

CSLSP with DDM Developing a method of combining the schedule problem with due-date management, we worked with a situation when we have just 2 families. This case is the most easiest and can be used as a motivation for further research. Consider the following situation, when an order for the family 1 arrives. Obviously, we can quote a lead time for this order = workload in front of it + its processing time Consider another situation, when an order for the family 2 arrives: Similarly, we can quote a lead time for this order in the same way, as workload in front of it + its processing time. However, if the next order will be for the family 1 – we will need to spawn a new family and execute a new setup, as the order #7 will be tight.

Approach to quote a lead time for CSLSP problem The main idea behind our approach for lead time quoting is to calculate expected amount of orders, which may arrive in front of an order, which is scheduling now. Once again consider the situation, when an order for the family 2 arrives: We presented expected workload K as states of a Markov Chain: Based on that we built distributions of expected workload for different K: Probability

Calculating Optimal Slack We are working on the two approaches – based on the NewsVendor Method. We used the following – lognormal distribution – of a customer rejecting proposed due date: Overage Costs (h) – slack is more than demand – so we have “missed opportunity” to put shorter lead time (due date) Underage Costs (b) – slack is less than demand – so we will miss an opportunity to put new coming orders in the existence family (no slacks) – and will need to create a new family and put a new setup. S* is (b/b+h) th-fractile of the distribution, which defines the optimum slack: S*=min(S: P(D<=S) = b/b+h) Amount of Time Units till Order Delivery (Due Date) Probability

Current Result of Simulation for “NewsVendor” Approach For now we get the following results from simulation of the presented method. Fraction of accepted orders with flexible Due-Date (NewsVendor) and constant Due-Date (Threshold Heuristic) Fraction of orders for which new families were created, but orders were rejected by customers due to long lead time: Distribution of slacks of orders, which is up to production:

Policy of Compound Rejection Until slack has not reached the predefined level, we need to consider a decision to spawn a new family, instead of compounding with the existing family. Probability of Rejection: Example of slack distribution: