Dark Energy with Clusters with LSST Steve Allen Ian Dell’Antonio.

Slides:



Advertisements
Similar presentations
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
Advertisements

What can we learn from Gravitational Magnification with BigBOSS? Alexie Leauthaud LBNL & BCCP.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
Strong Lensing in RCS-2 Clusters Matt Bayliss University of Chicago Department of Astronomy & Astrophysics Great Lakes Cosmology Workshop 8 – June 2, 2007.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
K.S. Dawson, W.L. Holzapfel, E.D. Reese University of California at Berkeley, Berkeley, CA J.E. Carlstrom, S.J. LaRoque, D. Nagai University of Chicago,
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
Tracing Dark and Luminous Matter in COSMOS: Key Astrophysics and Practical Restrictions James Taylor (Caltech) -- Cosmos meeting -- Kyoto, Japan -- May.
Cosmology with Galaxy Clusters Princeton University Zoltán Haiman Dark Energy Workshop, Chicago, 14 December 2001 Collaborators: Joe Mohr (Illinois) Gil.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Relating Mass and Light in the COSMOS Field J.E. Taylor, R.J. Massey ( California Institute of Technology), J. Rhodes ( Jet Propulsion Laboratory) & the.
Angular clustering and halo occupation properties of COSMOS galaxies Cristiano Porciani.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Galaxy-Galaxy Lensing What did we learn? What can we learn? Henk Hoekstra.
LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, 2011 Analysis Overview Bhuv Jain and Jeff Newman.
Welcome to the LSST Dark Energy Science Collaboration Bhuv Jain, Steve Kahn, Tony Tyson.
Impact of intrinsic alignments on cosmic shear Shearing by elliptical galaxy halos –SB + Filipe Abdalla astro-ph/ Intrinsic alignments and photozs.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Science Impact of Sensor Effects or How well do we need to understand our CCDs? Tony Tyson.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
Welcome to the LSST Dark Energy Science Collaboration Bhuv Jain, Steve Kahn, Tony Tyson.
Peter Capak Associate Research Scientist IPAC/Caltech.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Center for Cosmology and Astro-Particle Physics Great Lakes Cosmology Workshop VIII, June, 1-3, 2007 Probing Dark Energy with Cluster-Galaxy Weak Lensing.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
1 System wide optimization for dark energy science: DESC-LSST collaborations Tony Tyson LSST Dark Energy Science Collaboration meeting June 12-13, 2012.
Testing the Shear Ratio Test: (More) Cosmology from Lensing in the COSMOS Field James Taylor University of Waterloo (Waterloo, Ontario, Canada) DUEL Edinburgh,
Office of Science U.S. Department of Energy DETF Recommendations I 2.1Science (Charge questions 1, 2, 7) Andy Albrecht & Nicholas Suntzeff 2.1.2Comments.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
MARK CORRELATIONS AND OPTIMAL WEIGHTS ( Cai, Bernstein & Sheth 2010 )
Cosmological Constraints from the maxBCG Cluster Sample Eduardo Rozo October 12, 2006 In collaboration with: Risa Wechsler, Benjamin Koester, Timothy McKay,
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmology with Gravitaional Lensing
DES Cluster Simulations and the ClusterSTEP Project M.S.S. Gill (OSU / CBPF / SLAC) In collaboration with: J. Young, T.Eifler, M.Jarvis, P.Melchior and.
Gravitational Lensing Analysis of CLASH clusters Adi HD 10/2011.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
On ‘cosmology-cluster physics’ degeneracies and cluster surveys (Applications of self-calibration) Subha Majumdar Canadian Institute for Theoretical Astrophysics.
HST ACS data LSST: ~40 galaxies per sq.arcmin. LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, LSST will achieve percent level statistical.
LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, 2011 Draft White Paper Outline Steve Kahn.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference.
Cosmology with Large Optical Cluster Surveys Eduardo Rozo Einstein Fellow University of Chicago Rencontres de Moriond March 14, 2010.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Photometric Redshifts: Some Considerations for the CTIO Dark Energy Camera Survey Huan Lin Experimental Astrophysics Group Fermilab.
Gravitational Lensing
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Carlos Hernández-Monteagudo CE F CA 1 CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CE F CA) J-PAS 10th Collaboration Meeting March 11th 2015 Cosmology.
Probing dark matter halos at redshifts z=[1,3] with lensing magnification L. Van Waerbeke With H. Hildebrandt (Leiden) J. Ford (UBC) M. Milkeraitis (UBC)
CTIO Camera Mtg - Dec ‘03 Studies of Dark Energy with Galaxy Clusters Joe Mohr Department of Astronomy Department of Physics University of Illinois.
COSMIC MAGNIFICATION the other weak lensing signal Jes Ford UBC graduate student In collaboration with: Ludovic Van Waerbeke COSMOS 2010 Jes Ford Jason.
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
TR33 in the Light of the US- Dark Energy Task Force Report Thomas Reiprich Danny Hudson Oxana Nenestyan Holger Israel Emmy Noether Research Group Argelander-Institut.
Cosmological Inference from Imaging Surveys Bhuvnesh Jain University of Pennsylvania.
The Dark Energy Science Collaboration Andy Connolly (DESC Computing Coordinator), Rachel Bean (DESC Spokesperson)
Studies of Systematics for Dark Matter Observations John Carr 1.
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
KDUST暗能量研究 詹虎 及张新民、范祖辉、赵公博等人 KDUST 宇宙学研讨会 国台,
Presentation transcript:

Dark Energy with Clusters with LSST Steve Allen Ian Dell’Antonio

Why clusters? Add significant and complementary information to other probes. Excellent probe of both growth and expansion histories (complementary to WL, RSS  gravity tests). Reduced sensitivity to some common systematics (e.g. some photo-z errors, shear calibration) than other probes Significant potential gain with LSST + corollary data vs. Stage III experiments Interesting redshift range (0<z<2)

Key topics Theoretical/Simulation requirement Statistical analysis framework Cluster finding and sample selection Cluster masses and mass-observable relations Cluster distributions/Other cluster Observables/Shear peaks vs. clusters Integration with joint cosmological probes

Our charge (Adapted from Bhuv) Develop a list of tasks that are critical in the next three years (and identify tasks that can be delayed until later). The tasks should be: 1)Critical to the success of the program 2)Required now (with a long lead time) 3)We should be equipped to make progress on it 4)Simulations should be available (or part of the program) to address key issues 5)It should address the systematic uncertainties in cluster dark energy measurements 6)Connections to existing Stage III surveys (and how we acquire the data and expertise) 7)Be “interesting” – someone should want to work on it!

Cluster science 1 Strategy: – Define requirements for cluster cosmology including theoretical basis, inference framework, cluster finding and mass calibration. – Identify external data required for optimal results, e.g., X-ray, SZ, near-IR, spectroscopic follow-up. – Identify work to be done, partnerships/collaborations to be formed, priorities and resources required. Theoretical basis: simulating the distribution of galaxy clusters: – Identify predictions needed for cluster science, the cosmological and astrophysical models to be studied, and the accuracy and precision required. – Carry out the required simulations. Inference framework: – Develop framework required to model observed distribution of galaxy clusters and all relevant calibration and scaling relations self-consistently (accounting for all known biases, correlations and systematic uncertainties). – Identify optimal choices of nuisance parameters and parameterizations for e.g. mass functions, scaling relations, systematic biases etc. – End-to-end testing against simulations.

Cluster science 2 Mass calibration: weak lensing – Determine required accuracy of cluster WL mass calibration across mass and redshift range of interest. – Extend STEP-like simulations into cluster shear regime (g~0.1). (Modest extension of requirement for WL group). – Cosmological /ray-tracing simulations to determine systematic bias and uncertainties in cluster WL mass calibration with different methods. – Understand impacts of photo-z uncertainties on WL mass calibration. How well can we do with LSST alone? What external data will we need? (Link to other groups). – Magnification vs. shear based methods. – Investigate key instrumental effects Mass calibration: scaling relations: – Identify required multi-wavelength mass proxies and strategy for acquiring them. – Determine key mass-observable scaling relations from current data (informing overall strategy and priors/nuisance parameters for modeling). Tomographic analyses: – Cosmological measurements from redshift dependent weak lensing shear – Cosmological measurements from strong lensing signals Cluster finding – Determine optimal strategies for finding clusters with LSST alone and in combination with external data (e.g. X-ray, SZ). – Develop optimized algorithms for cluster finding, maximizing purity and completeness. Test with simulations.

Example: cluster WL mass calibration. Some specific tasks for next few years. The impact of photo-z uncertainties on cluster WL mass calibration (coordinate with photo-z groups) – Use existing and (where possible) newly-acquired LSST-like data for representative fields with comprehensive spectroscopic follow-up (and/or a large number of broad and medium-band filters, e.g. COSMOS) to asses the impact of photo-z uncertainties on cluster WL mass calibration. – Identify magnitude/color ranges where LSST photo-z's will be sufficient to enable robust mass calibration, and those where external data will be required (e.g. high redshifts) – What is the impact of contamination by cluster member galaxies? How to mitigate? Cosmological /ray-tracing simulations for cluster WL mass calibration (coordinate with simulation group) – Extend current work to cover full mass and redshift range of interest, and explore range of models (e.g. NFW, truncated NFW etc) and fitting ranges to find optimal solution. – How do we identify optimal cluster centers for shear measurements when working with LSST data alone? (Similar issue for cluster finding). Explore covariance with other, multiwavelength observables in real data. Improved imaging simulations for Clusters (coordinate with WL group) – Extend STEP-like simulations into shear regime of clusters (g~0.1). – quantify influence of stellar reflection halos, galactic cirrus, variations in sky background, photometric measurements on the galaxy cluster measurements – Investigate the effect of deblending on cluster shear measurements – Investigate how telescope/detector effects influence cluster lensing measurements (mostly, but not all shared with WL—connect with project scientists. – Investigate what we can extract from the deep drilling fields through imsim simulations.

Where do we go from here? Over the next 2-3 weeks 1. Identification of teams that are interested in working on these issues 2.Initial prioritization of the tasks to be investigated 3.Establish a regular meeting/work schedule

Where do we go from here? Over the summer 1. Selection of highest priority tasks to be pursued 2.Writing of relevant sections of DESC white paper 3.Preliminary assignment of work areas for DESC matrix

Contacts! If you are interested in joining us in this work over the summer and beyond, contact Ian Dell’Antonio Steve Allen

Lensing Shear Peaks: between WL and Clusters? Morgan May, Zoltan Haiman, Jan Kratochvil, Xiuyuan Yang Motivation: Suspected that background of projections in shear selected galaxy clusters had cosmological information. Currently: simulations  lensing maps  peaks (simulations of different cosmologies with Blue Gene at BNL—ray tracing (currently at 1’ smoothing) to shear Adding shear peak statistics to power spectrum improves constraints by ~ factor of 2. Model the cooling and contraction of baryons in DM halos, by steepening halo profile. Find halos, remove particle, Replace with analytic NFW

peak counts: strong increase in # of high peaks very little change in # of low peaks power spectrum: increase on small scales. Change in power spectrum and peak counts, by 50% increase concentration parameter low peaks contain much of the cosmology information Use halo finder to figure out where the peaks come from Preliminary result: peak counts less biased than power spectrum, and in different direction.  suggests possibility of self- calibration

Why now?, Planning –determine simulations and match with observations Lensing peaks are a new probe of dark energy. Great potential, but need more work to firmly establish as a key probe. Study effect of systematic errors - will be different than for other probes. Study with Imsim (Debbie Bard) Combine multiple redshifts, smoothing scales, combine with other probes: extract maximum information from lensing maps Baryon effects - only baryon cooling