Fundaments of Combustion & Flame typical burner flame fuel air premixed flow Inner flame outer flame air Stream lines temperature distance along streamline.

Slides:



Advertisements
Similar presentations
Lecture 20: Laminar Non-premixed Flames – Introduction, Non-reacting Jets, Simplified Description of Laminar Non- premixed Flames Yi versus f Experimental.
Advertisements

Reflux Condensation Heat Transfer of Steam-Air Mixture under Gas-Liquid Countercurrent Flow in a Vertical Tube Oct 7, 2004 Institute of Nuclear Safety.
Flamelet-based combustion model for compressible flows
Lecture 15: Capillary motion
Chapter 2 Introduction to Heat Transfer
MAE 5310: COMBUSTION FUNDAMENTALS
Laminar Flame Theory By Eng. Mohamad Okour UINVERSITY OF JORDAN MECHANICAL ENGINEERING DEPARTEMENT.
Luiza Bondar, Andreas Class(*), Jan ten Thije Boonkkamp, Ronald Rook, Bob Mattheij Laminar flame edge dynamics A level set approach (*) Institute for Nuclear.
Laminar Premixed Flames and Diffusion Flames
Overview of Combustion
A parametric study of the effect of fractal-grid generated turbulence on the structure of premixed flames Thomas Sponfeldner, S. Henkel, N. Soulopoulos,
CHAPTER 5 Principles of Convection
AME 513 Principles of Combustion
..perhaps the hardest place to use Bernoulli’s equation (so don’t)
Laminar Premixed Flames A flame represents an interface separating the unburned gas from the combustion products. A flame can propagate as in an engine.
Luiza Bondar Jan ten Thije Boonkkamp Bob Matheij Combustion associated noise in central heating equipment Department of Mechanical Engineering, Combustion.
AME 513 Principles of Combustion
9.線形写像.
大気重力波と一般流 の相互作用 & 自己紹介 元 東京学芸大学 教育学部 環境総合科学課程 自然環境科学専攻 気象学研究室 現 今村研 M 1 樋口武人 元 東京学芸大学 教育学部 環境総合科学課程 自然環境科学専攻 気象学研究室 現 今村研 M 1 樋口武人.
5.連立一次方程式.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
論文紹介 Quasi-Geostrophic Motions in the Equatorial Area Taroh Matsuno(1966) 今村研 修士課程 1 年 荒井 宏明.
AME 513 Principles of Combustion Lecture 10 Premixed flames III: Turbulence effects.
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
温間ショットピーニングにおけるばね鋼の機械的性質
Lectures on Rheology of Earth Materials Fundamentals and frontiers in the study of deformation of minerals and rocks (at Tohoku University) Shun-ichiro.
CHE/ME 109 Heat Transfer in Electronics
ばね鋼の温間ショットピーニング加工に関する研究
Computations of Fluid Dynamics using the Interface Tracking Method Zhiliang Xu Department of Mathematics University of Notre.
Photometric Stereo for Lambertian Surface Robert J. Woodham, "Photometric method for determining surface orientation from multiple shading images", Optical.
Convection Prepared by: Nimesh Gajjar. CONVECTIVE HEAT TRANSFER Convection heat transfer involves fluid motion heat conduction The fluid motion enhances.
Conservation Laws for Continua
Centre for Fire and Explosion Studies Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release through a length of tube with local contraction.
Design & Thermo Chemistry of Turbo Combustor P M V Subbarao Professor Mechanical Engineering Department Design for performance, safety and Reliability…..
Analysis of A Disturbance in A Gas Flow P M V Subbarao Associate Professor Mechanical Engineering Department I I T Delhi Search for More Physics through.
EM propagation paths 1/17/12. Introduction Motivation: For all remote sensing instruments, an understanding of propagation is necessary to properly interpret.
Kemerovo State University(Russia) Mathematical Modeling of Large Forest Fires Valeriy A. Perminov
Mathematical Equations of CFD
1 MAE 5130: VISCOUS FLOWS Conservation of Mass September 2, 2010 Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R.
1 MAE 5310: COMBUSTION FUNDAMENTALS Introduction to Laminar Diffusion Flames: Non-Reacting Constant Density Laminar Jets Mechanical and Aerospace Engineering.
Development of Thermodynamic Models for Engine Design P M V Subbarao Professor Mechanical Engineering Department Methods to Design for Performance….
Mass Transfer Coefficient
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
J.-Ph. Braeunig CEA DAM Ile-de-FrancePage 1 Jean-Philippe Braeunig CEA DAM Île-de-France, Bruyères-le-Châtel, LRC CEA-ENS Cachan
TURBULENT PREMIXED FLAMES AT HIGH KARLOVITZ NUMBERS UNDER OXY-FUEL CONDITIONS Yang Chen 1, K.H. Luo 1,2 1 Center for Combustion Energy, Tsinghua University,
Heat flow measurement in shallow seas through long-term temperature monitoring Hamamoto Hideki (Earthquake Research Institute,Univ. of Tokyo) Yamano Makoto.
MAE 5310: COMBUSTION FUNDAMENTALS Detonation Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R. Kirk.
Convection in Flat Plate Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Universal Similarity Law ……
Application of LES to CFD simulation of Diesel combustion 3604A058-2 Fumio KUWABARA.
Compressible Frictional Flow Past Wings P M V Subbarao Professor Mechanical Engineering Department I I T Delhi A Small and Significant Region of Curse.
INTRODUCTION TO CONVECTION
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
The Chemistry of Fuel Combustion in SI Engines P M V Subbarao Professor Mechanical Engineering Department Exploit the Chemical Characteristics of Combustion?!?!
Heat release modeling FPVA-based model V. Terrapon and H. Pitsch 1 Stanford PSAAP Center - Working draft.
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2 Tutorial #1 WRF#14.12, WWWR #15.26, WRF#14.1, WWWR#15.2, WWWR#15.3, WRF#15.1, WWWR.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes An Interface Propagation Model for Reaction-Diffusion Advection Adam Oberman An Interface.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 6 Introduction to convection.
CONVECTION : An Activity at Solid Boundary P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Identify and Compute Gradients.
University of Wisconsin -- Engine Research Center slide 1 Flamelet Modeling for the Diffusion Combustion in OpenFOAM ME 769 Final Project Presentation.
Internal Flow: General Considerations. Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume.
Problem 1 Diesel fuel (C12H26) at 25 ºC is burned in a steady flow combustion chamber with 20% excess air which also enters at 25 ºC. The products leave.
Droplet evaporation Liquid fuel combustion
ME 475/675 Introduction to Combustion
Fundamentals of Convection
Effect of Variable Gravity on Premixed Turbulent Flames
Heat Transfer Coefficient
Internal Flow: General Considerations
COMBUSTION TA : Donggi Lee PROF. SEUNG WOOK BAEK
Convective Heat Transfer
Asst. Prof. Dr. Hayder Mohammad Jaffal
Presentation transcript:

Fundaments of Combustion & Flame typical burner flame fuel air premixed flow Inner flame outer flame air Stream lines temperature distance along streamline reaction range oxygenfuel diffusion layer diffusion reaction layer burnt gas unburnt gas flame propagatio n pre-heated layer premixed flame (inner flame) diffusion flame (outer flame)

火炎解析へのアプローチ – 予混合火炎モデル - 予混合火炎 例:ブンゼンバーナ、ガスコンロ 混合比の定まった予混合ガスの未燃、 既燃ガス界面における燃焼 火炎は伝播性を持つ 反応は温度律速 火炎特性(火炎面など)を表現する 関数 反応進行度、火炎伝播速度 反応帯 既燃ガス温度 未燃ガス温度 伝播 予熱帯 air fuel u in ubub  unburnt burnt TuTu Streamline uu u TbTb bb ubub ( 燃焼速度 )

予混合火炎の flamelet モデル 実用燃焼機器における予混合燃焼流れでは ● 実用燃焼機器における予混合燃焼流れでは Kolmogrov スケール ≫ 火炎面厚さスケール Kolmogrov スケール ≫ 火炎面厚さスケール 流れ変動時間スケール ≫ 化学反応素過程の時間スケール ● G 方程式 ● G 方程式 (Kerstein, 1988) ; 火炎面の輸送を表す. S L ;( 層流 ) 火炎速度 SLSL T(t 1 ) T(t 0 )  u S L C p  T ~  h  ~  C p  ∂ T  ∂ x)δ T=Tb-TuT=Tb-Tu δ

Weak points of G-equation modeling  A pure convection equation tends unstable in numerical solution without diffusion term.  An initial profile is conserved in time evolution , even if inappropriate.  Use upwind scheme or add numerical diffusion.  Reset the profile adjusted to physical or mathematical meaning; ex. distance function. ( level-set method ) ??

X G  未燃既燃 Analysis of local profile near the flame surface 1D plane flame Considering a finite thickness  –Add a diffusion term explicitly, –Give a spatial profile of S by Taylor’s expansion around G= G 0 x uu uSuuSu Unburnt (G<0) Burnt (0<G) G=G 0 ,・・・ , 

Burger’s eq., hyperbolic tangent profile

Analysis of profile in the flame Dependency on variation of  (analogy of  u = const.) Density weighted flame speed an d if

Analysis of profile in the flame (cont.’d) In laminar plane flame ( ) ; Dependency on Variation of  ( )

1 D example Fig.1 Time marching solution of new eq. from linear initial profile for CH4:O2:N2=1:2:3 premixed flame. X [  m ] old+diff. 100 steps new 25 steps old 100 steps Fig.2 Time marching solutions of new and old eqs. from the same linear initial profile. 1D Flame propagation by new G-eq. old G-eq. X [  m ]

2 D example [s] [s] [s] Burnt gas flow out Fig.4 G-profile and steam lines at [s] Fluid dynamic flame instability by converging/diverging stream lines [s] [s] Curvature effect on local flame speed rounds the flame shape.

Analysis of solution around a spherical flame 3D formulation Cylindrical ( r -  ) coordinate (n: dimension) on flame surface :shrink (extinct) :expand r SuSu i f u=0, G=G 0,

Analysis of solution with a streching flow Flame in a stretching flow Flame speed dependency L : Markstain No. ( ~ 1) (Calvin 1985) Constant flame speed burnt unburnt x  u

Methane-air lifted non-premixed jet flame Muniz and Mungal,Combustion and flame 111, 1997 fuel tube inner diameter D=4.8 [mm] S L 0 max of methane-air flame=0.37[m] (for ex. Re=4900,avaraged Lift-off height is about 30D=150 [mm]) Velocity(Co-flow ) Fuel Coflow Inlet diameter Reynolds No. AIR D=4.8 (mm) 4900 Velocity (Fuel ) CH4 (99% Vol.) Ujet=15.0 [m/s] Uco=0.74 [m/s] D 60D Fuel air 20D Domain ( X,R,θ)= (60D, 20D, 2π) No. of Grid cells(X,R, θ)=(200,82, 32) ( Modeling for Partially Premixed Flame

Edge flame extinction Triple flame propagation Frame-front propagation Blow-out criterion Air Fuel Classification of the flame position FLAME C FLAME A Classification of Chen et al.(2000)

Flamelet equation Schematic Figure of Triple flame 2 scalar flamelet model of partially premixed flame FlameletG-equation Premixed flame propagation Mixture fraction equation Diffusion flame, Mixing of Fuel Lifted diffusion flame  RANS:Muller et al(1994), Herrmann et al.(2000) LES:Duchamp et al (2001),LES:Hirohata et al(2001)

Air Fuel Un-burnt gas: Mixing zone Burnt gas: Diffusion flame zone Partial Premixed flame front  st G=G0 The G-equation is used to distinguish between the unburnt and burnt regions, the iso-surface of G is used to express flame surface. Mass fraction model using 2scalar flamelet. Unburnt mixing zone (G=0) flame surface(G=0.5) Diffusion flame zone (G=1)

Quenching effect of turbulent burning velocity Burnt gas without quenching model f q =1 Burnt gas with quenching model Flame tips can not quench where the strong shear exists Lift-off height and flame shape cannot be predicted without quenching model. L : Markstain No. ( ~ 1)

18 Premixed flame with the mixture rate gradient Flame speed dependency on defined position based on the flamelet approach G=0.25G=0.5G=0.75

19 Premixed flame with the mixture rate gradient –Fuel ratio (ξ) gradient normal to flame surface (G) –Flame speed S L is basically depend on ξ Is flame speed same as simple plane flame? iso-surface of G=0.5

20 Premixed flame with the mixture rate gradient mixture rate gradient normal to flame face ⇒ gradient of flame speed ⇒ thinner flame Flame speed gradient on the flame surface : turbulent flame thickness : turbulent flame speed gradient

Level-set to phase field in flame Distance function (scale in space) Progress variable (scale in time)   ’ >  : observed thickness (if  s’/  ’  ~  s /  x (~x’)  real distance along streamlimes corrugated or wrinkling turbulent flame x’: observed distance in averaged flame  plane laminar flame x : distance from flame surface G=G(x) x X G  unburnt burnt gas flow

Level-set to phase field in flame Steady propagating flame solution: =const =0=0 if S 1 →0 (S 1 /  =const) Level-set form Phase field form (F ~ quadratic) thin flame assumption =const If steady solution exists,

Level-set to phase field in flame Example CHEMKIN ( GRI-Mech 3.0 ) CH 4 - O 2 (φ=1) + N 2 50% 300K x [ mm ] temperature tanh{(x-x 0 )/  } CHEMKIN Inage’s Hyperbolic Tangent Approximation (Inage et.al. 1989)  : progress variable Assumed solution for laminar plane flame:

PH for non-equilibrium flame interface Allen-Cahn equation (Allen & Cahn 1979, Chen 1992) Model of steady liquid-solid phase interface (v f =0) This formulation insure the second law of thermal mechanics, so that F(  ) (=Free energy) decreases in time Model of growing liquid-solid phase interface 1D plane surface:  F()F()

PH for non-equilibrium flame interface 0 1  F  Source term fitting to Inage’s model  (K) G (kJ/kg) Reaction fast Gibbs’ free energy: G=H-TS for gas reaction in constant pressure Thermal equilibrium CAN’T be assumed in a flame with large temperature change. Reaction slow Reaction slow Gibbs’ free energy progresses in CH 4 /air flame Functional F(  ) of Allen-Cahn eq.

Based on Phase Field Method Modified A-C eq. for temperature variation (Fife 2000) Estimated by numerical solution CHEMKIN solution of homogeneous condition CH 4 -O 2 (stoichimetric 600K) Compare to Inage ’ s model  Mf  Inage ’ s model

PH for non-equilibrium flame interface Modified A-C eq. with internal heat sink (Fife 2000)  → S : Entropy H(=  cT): Enthalpy is conserved F→G(S,T) : Gibbs’free energy Internal heat sink by convection holds a steady flame. TuTu uu TbTb Local homogeneous Local equilibrium assumed in a steady flame (T locally balanced). ⇔ analogy to spinodal phase change Approx. x T S SuSu SbSb 

PH for non-equilibrium flame interface Estimation in flame: Modified A-C eq. for gas reaction with large temperature raise T b : burnt gas temperature (under H=const. &  cT u ≪  TS) Reactions stop at burnt region : M(T) corresponds to the reaction speed which should increase as temperature raise :

PH for non-equilibrium flame interface Modified A-C eq. for gas reaction with large temperature raise T b : burnt gas temperature (under H=const. &  cT u ≪  TS) [A] by num. solution in homogeneous [B] [C1] is estimated by num. solution in homogeneous [C2] and [D] Inage’s model T [K] TS [KJ] [A] [B] [C2] [C1] [D] Ex. CH 4 /Air premixed flame

Conclusive remarks Modified level-set function for premixed flamelet (G-eq) is derived to consider the flame thickness. Inage’s flame model (progress variable) is considered by phase-field method based on Allen-Cahn eq. Modified level-set function is consistent to phase-field method based on Allen-Cahn eq., where the hyperbolic tangent profile is a common approximated solution.