MAE156A October 17, 2006 UCSD H. Ali Razavi. Permanent DC Motor After Coil (modeled:

Slides:



Advertisements
Similar presentations
VTU Syllabus BASIC ELECTRONICS P. S. AITHAL
Advertisements

Lecture 4: Signal Conditioning
Electronic Devices Eighth Edition Floyd Chapter 4.
Electronic Devices Ninth Edition Floyd Chapter 11.
Recall Last Lecture DC Analysis and Load Line
Power System Fundamentals
Module 8 - Control Systems: Review of Electronics Goals & Objectives Goal: This module is to provide a review/introduction to electronics basics. The power.
DC Motors KL3073.
Lecture 31 DC Motors.
December 2009 David Giandomenico DC Permanent Magnet Motors A tutorial winch design David Giandomenico Lynbrook High School Robotics FIRST Team #846
MAE156A January 11, 2007 UCSD H. Ali Razavi. PM Motor 10A: Start/Stall 2A: Continuous V: 10-12V Design Example 1: Objective: To Turn On and Off a Permanent.
Output Stages And Power Amplifiers
AP Physics C Montwood High School R. Casao
Chapter 1 Quick review over Electronics and Electric Components Prepared By : Elec Solv.
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth.
ENERGY CONVERSION ONE (Course 25741) CHAPTER NINE ….continued DC MOTORS AND GENERATORS.
ET 332a Dc Motors, Generators and Energy Conversion Devices 1Lesson a.pptx.
Principles & Applications
1 Electronic Circuits TRANSISTOR PRINCIPLES & APPLICATIONS.
ET 332a Dc Motors, Generators and Energy Conversion Devices 1Lesson a.pptx.
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 5: Bipolar Junction Transistor by Muhazam Mustapha, October 2011.
ECE 3455 Electronics Lecture Notes Set 6 -- Version 5 Bipolar Junction Transistors Dr. Dave Shattuck Dept. of ECE, Univ. of Houston.
CHAPTER 7 Junction Field-Effect Transistors. OBJECTIVES Describe and Analyze: JFET theory JFETS vs. Bipolars JFET Characteristics JFET Biasing JFET Circuits.
Principles & Applications
Bipolar Transistor Review
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc. Chapter 16 DC Machines.
MAE156A October 12, 2006 UCSD H. Ali Razavi.  Electric voltage is similar to height difference: - Electrons start moving under voltage difference - Unless.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 5-1 Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
BJTs. Transistor The transistor is the main building block “element” of electronics. A transistor is a semiconductor device used to amplify and switch.
Fundamental of Electrical Engineering
Dual Winding Method of a BLDC Motor for Large Starting Torque and High Speed IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005 G. H. Jang and.
Lecture 16Electro Mechanical System1 DC motors are built the same way as generators  Armature of a motor connected to a dc power supply  When switch.
Bipolar Junction Transistors (BJTs)
McGraw-Hill 5-1 © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
Chapter 4 Bipolar Junction Transistors
Stepping motors Jari Kostamo.
Large Signal Amplifier Design Ryan Child 1. Background Large Signal Amplifiers belong to a class of amplifiers that are used for applications where high.
ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical.
Chapter 3 Bipolar Junction Transistor (BJT)
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
Investigation on the Bipolar-Starting and Unipolar-Running Method to Drive a Brushless DC Motor at High Speed with Large Starting Torque PREM, Department.
Introduction to DC-DC Conversion EE174 – SJSU Tan Nguyen.
DC motor principles Speed control Direction Stepper motor principles
Chapter 4 Bipolar Junction Transistors
ECE 333 Linear Electronics
Chapter 13 Ideal Transformers
Sensors and Actuators Simple Sensors Switches and Pots Other Sensors Simple Actuators LEDs and Buzzers DC Motors MAE 156A.
Chapter 4 Bipolar junction transistor Ir. Dr. Rosemizi Abd Rahim 1 Ref: Electronic Devices and Circuit Theory, 10/e, Robert L. Boylestad and Louis Nashelsky.
Rectifiers, Switches and Power Supplies
Chapter 13 Ideal Transformers
Ideal Transformers Chapter Objectives:
Electronic Devices Ninth Edition Floyd Chapter 17.
ELEC 3105 Basic EM and Power Engineering
Open book, open notes, bring a calculator
POWER AMPLIFIER Concept of Power Amplifier Power BJTs Power MOSFETs
MC3479P Stepper Motor and Stepper Motor IC
Transistor Characteristics
Electromechanical Systems
Power Semiconductor Losses
Bipolar Transistors AIM:
DC motor.
DC Motors and H-Bridges
CMPUT 399 Intro Robotics & Mechatronics: Motor Control
MOSFETs AIM: To understand how MOSFETs can be used as transducer drivers PRIOR KNOWLEDGE: Output transducers, Current in circuits, Calculating resistor.
AC Drives Dr. Adel A. El-Samahy Department of Electrical Engineering University of Helwan.
Solid State Electronics ECE-1109
Lecture 1 Bipolar Junction Transistors
Bipolar Junction Transistors
Presentation transcript:

MAE156A October 17, 2006 UCSD H. Ali Razavi

Permanent DC Motor After Coil (modeled: ) Resistance (modeled: ) Electro Motive Force Generator (modeled: ) Electrical to Mechanical Conversion (modeled: ) Model: Kirchhoff's Voltage law: - Steady State: - Stall/Start: Maximum Torque Under voltage For fixed linear relationship between & - Power output: - Efficiency:

A typical permanent magnet DC motor curve (copied from an actual spec sheet): Measured at specific constant voltage: Stall/Start Current No Load Current :Output Power :Efficiency :Measured Current :Measured data points No Load Speed Stall/Start Torque Design Example: 9A +Margin: 10A Design Example: 1.5A +Margin: 2A

PM Motor 10A: Start/Stall 2A: Continuous V: 10-12V Design Example 1: Objective: To Turn On and Off a Permanent Magnet DC motor using a Micro Processor with the requirement of passing 10A during On Time with 10-12V on motor terminals. Problem 1: 10A is too high current to be provided by Microprocessor Problem 2: Switching it off and on using microprocessor Problem 3: Interfacing components and programming Pin x Microprocessor Idea 1: Use of MOSFET to switch the Motor On/Off Idea 2: Use of Bipolar Transistor to switch the Motor On/Off Concept Generation Risk Reduction Trouble Shooting Optimization Problems DefinitionConcept Generation Idea 3: Use of Darlington Transistor to switch the Motor On/Off # of components Design Merits Cost Power (Start/Stall) Power (Continuous) Efficiency (Start/Stall) Efficiency (Continuous)

Step 1. Thinking, looking at Handbook, Catalog, Internet, Book, Consulting, … to pick a design * (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) … Design Example 1: Risk Reduction: Analysis of Idea 1 PM Motor Pin x Microprocessor External Supply Solving Problem 1 Problem 2 (needs further detail)

Step 2. Selecting the chip (Handbook, Catalog, Consulting, Book, etc.) * (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) … Design Example 1: … Risk Reduction: Analysis of Idea 1 PM Motor External Supply - This is an nMOSFET - One can look catalog under “Power nMOSFET” Search “Power MOSFET” - Picked “HUF764323D” Step 3. Downloaded and Reviewed Spec sheet

Step 4. Analysis to determine - : required voltage to turn On - : the external voltage - : the voltage seen by Motor (there must be enough voltage and current to power the motor) - : Efficiency (what percentage of power delivered by external supply is delivered to motor) - : Power … Design Example 1: … Risk Reduction: Analysis of Idea 1 Case 1: Continuous Mode Operation (2A current through motor) PM Motor Torque Speed Thermal waste at MOSFET External Supply Case 2: Start/Stall Mode Operation (10A current through motor) HUF764323D √ Good! 10-12V on motor terminals. The objective is to have 10-12V on motor terminals, so assume and verify if it would work

Step 4. Analysis to determine - : required voltage to turn On - - : Efficiency (what percentage of power delivered by external supply is delivered to motor) - : Power … Design Example 1: … Risk Reduction: Analysis of Idea 1 Case 1: Continuous Mode Operation (2A current through motor) PM Motor Thermal waste at MOSFET External Supply Case 2: Start/Stall Mode Operation (10A current through motor) HUF764323D Continuous Efficiency √ √ Stall/Start Efficiency Continuous Power Stall/Start Power

Step 4. Analysis to determine - : required voltage to turn On - … Design Example 1: … Risk Reduction: Analysis of Idea 1 Case 1: Continuous Mode Operation (2A current through motor) PM Motor External Supply Case 2: Start/Stall Mode Operation (10A current through motor) HUF764323D √ √ √ √ Assuming 25 ◦ C Junction Temperature Overdrive for uncertainty Continuous Power Stall/Start Power Good! Microprocessor Can directly turn it On.

… Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 1 PM Motor Pin x Microprocessor External Supply Problem 1: Solved Problem 2: Solved Pull down resistor is added to prevent pin floating and accidental turn on of motor. Desire: Small leakage current. HUF764323D

… Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 1 PM Motor Pin x Microprocessor External Supply Design merits of Idea 1: Cost= $A # of Components = 2 HUF764323D

Step 1. Thinking, looking at Handbook, Catalog, Internet, Book, Consulting, … to pick a design * (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) … Design Example 1: Risk Reduction: Analysis of Idea 2 PM Motor Pin x Microprocessor External Supply Solving Problem 1 Problem 2 (needs further detail) To protect against reverse current [Note this was build in for nMOSFET] To limit current and protect transistor

- This is an NPN Bipolar Transistor - Download “Bipolar Power Transistor Selection Guide” from Looked in column under General Purpose Transistors - Picked “KSH3055” with Step 3. Downloaded and Reviewed Spec sheet … Design Example 1: … Risk Reduction: Analysis of Idea 2 Step 2. Selecting the chip (Handbook, Catalog, Consulting, Book, etc.) - (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) - Looked at in the spec sheet of Chips it returned (to select a high gain transistor) PM Motor External Supply Solving Problem 1 IN4002 KSH3055 Standard Diode

PM Motor External Supply Solving Problem 1 IN4002 KSH3055 Step 4. Analysis to determine - : required current to turn On - : the external voltage - : the voltage seen by Motor (there must be enough voltage and current to power the motor) - : Efficiency (what percentage of power delivered by external supply is delivered to motor) - : Protective resistor … Design Example 1: … Risk Reduction: Analysis of Idea 2 Torque Speed Thermal waste at Bipolar Transistor Case 1: Continuous Mode Operation (2A current through motor) Case 2: Start/Stall Mode Operation (10A current through motor) Continuous Stall/Start The objective is to have 10-12V on motor terminals, so assume and verify if it would work Typical Characteristic

PM Motor External Supply Solving Problem 1 IN4002 KSH3055 Case 1: Continuous Mode Operation (2A current through motor) Case 2: Start/Stall Mode Operation (10A current through motor) √ √ Typical Characteristic Continuous Stall/Start √ Good! 10-12V on motor terminals. Step 4. Analysis to determine - - : the voltage seen by Motor (there must be enough voltage and current to power the motor) - : Efficiency (what percentage of power delivered by external supply is delivered to motor) - : Protective resistor … Design Example 1: … Risk Reduction: Analysis of Idea 2 Torque Speed Thermal waste at Bipolar Transistor

Step 4. Analysis to determine - - : Efficiency (what percentage of power delivered by external supply is delivered to motor) - : Protective resistor PM Motor External Supply Solving Problem 1 IN4002 KSH3055 Case 1: Continuous Mode Operation (2A current through motor) Case 2: Start/Stall Mode Operation (10A current through motor) √ √ Case 1: Continuous Mode Operation (2A current through motor) √ … Design Example 1: … Risk Reduction: Analysis of Idea 2 Torque Speed Thermal waste at Bipolar Transistor Continuous Stall/Start Highest Voltage Lowest Voltage (Maximum required current) Estimate of power wasted at Worst Casing:

PM Motor External Supply Solving Problem 1 IN4002 KSH3055 Turn On by … Design Example 1: Risk Reduction: Analysis of Idea 2 Pin x Microprocessor Problem 2 (1.2A Exceeds what Micro-Processor can provide) … Step 4.

PM Motor Pin x Microprocessor External Supply IN4002 … Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 2 Problem 3 More data needed KSH3055 Turn On by To protect against excessive current Sub-Step A. Thinking, looking at Handbook, Catalog, Internet, Book, Consulting, … to pick a design * (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp )

- This is an PNP Bipolar Transistor - Look at downloaded “Bipolar Power Transistor Selection Guide” from Looked in and column under General Purpose Transistors - Picked “KSH210” with and Step 3. Downloaded and Reviewed Spec sheet … Design Example 1: … Risk Reduction: Analysis of Idea 2 Step 2. Selecting the chip (Handbook, Catalog, Consulting, Book, etc.) - (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) - Looked at and in the spec sheet of Chips it returned (to select a reasonable gain and current output)

Step 4. Analysis to determine - : required current to turn On - : Protective resistor … Design Example 1: … Risk Reduction: Analysis of Idea 2 To simplify modeling and calculations, losses in this transistor is ignored compared to the other one Minimizing leakage current when ON: KSH210 Overdrive

PM Motor Pin x Microprocessor External Supply IN4002 … Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 2 Problem 3 The current is small. However, the circuit on right has high current. Need to protect the microprocessor. KSH3055 Start Motor by KSH210

PM Motor Pin x Microprocessor External Supply IN4002 … Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 2 KSH3055 Start Motor by KSH210 Opto Isolator HSR312

Bipolar T Bridge … Step 4. Analysis … Design Example 1: … Risk Reduction: Analysis of Idea 2 PM Motor Pin x Microprocessor External Supply IN4002 KSH3055 KSH210 Design merits of Idea 2: Cost= $B # of Components = 8 HSR312

Step 1. Thinking, looking at Handbook, Catalog, Internet, Book, Consulting, … to pick a design * (Stiffler, A. K., Design with Microprocessors for Mechanical Engineers, McGraw-Hill, Inc., 1992, pp ) … Design Example 1: Risk Reduction: Analysis of Idea 3 PM Motor Pin x Microprocessor External Supply IN4002 Darlington Transistor HSR312 Assignment: - Determine a Darlington Transistor Part number - Download its spec sheet and determine and for two cases: Continuous and Start/Stall - Follow similar analysis to idea 2 and determine * Determine (Worst Casing) * Determine to have the transistor ON for 2 cases: Continuous and Start/Stall * Determine efficiency for 2 cases: Continuous and Start/Stall * Determine to minimize leakage current when ON Restriction: ONLY one (2-sided) sheet of paper

Make a decision Design merits of Idea 3: Cost= $C # of Components = 5 MOSFET Bipolar T Bridge Darlington Build Trouble Shoot Optimize Design merits of Idea 2: Cost= $B # of Components = 8 Design merits of Idea 1: Cost= $A # of Components = 2 … What could happen if no analysis was done?