Intermediate TCP/IP TCP Operation.

Slides:



Advertisements
Similar presentations
Cisco 2 - Routers Perrine. J Page 14/30/2015 Chapter 10 TCP/IP Protocol Suite The function of the TCP/IP protocol stack is to transfer information from.
Advertisements

CISCO NETWORKING ACADEMY Chabot College ELEC Transport Layer (4)
CCNA – Network Fundamentals
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public ITE PC v4.0 Chapter 1 1 OSI Transport Layer Network Fundamentals – Chapter 4.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public ITE PC v4.0 Chapter 1 1 OSI Transport Layer Network Fundamentals – Chapter 4.
Transmission Control Protocol (TCP)
Guide to TCP/IP, Third Edition
CISCO NETWORKING ACADEMY PROGRAM (CNAP)
Chapter 7: Transport Layer
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 7: Transport Layer Introduction to Networking.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 7: Transport Layer Introduction to Networking.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 7: Transport Layer Introduction to Networking Assist. Prof.
Lecture 7 Transport Layer
Chapter 7 Intro to Routing & Switching.  Upon completion of this chapter, you should be able to:  Explain the need for the transport layer.  Identify.
UDP & TCP Where would we be without them!. UDP User Datagram Protocol.
Chapter 7 – Transport Layer Protocols
CCNA 1 v3.1 Module 11 Review.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.0 OSI Transport Layer Network Fundamentals – Chapter 4.
Review of Chapters 12, 13 & 14 Transport Layer Session Layer Presentation Layer.
1 © 2003, Cisco Systems, Inc. All rights reserved. CCNA 1 v3.0 Module 11 TCP/IP Transport and Application Layers.
1 CCNA 2 v3.1 Module Intermediate TCP/IP CCNA 2 Module 10.
WXES2106 Network Technology Semester /2005 Chapter 8 Intermediate TCP CCNA2: Module 10.
Chapter 4 OSI Transport Layer
Gursharan Singh Tatla Transport Layer 16-May
Process-to-Process Delivery:
TRANSPORT LAYER T.Najah Al-Subaie Kingdom of Saudi Arabia Prince Norah bint Abdul Rahman University College of Computer Since and Information System NET331.
1 Transport Layer Computer Networks. 2 Where are we?
TCP/IP Application and Transport
Networking Basics TCP/IP TRANSPORT and APPLICATION LAYER Version 3.0 Cisco Regional Networking Academy.
The Saigon CTT Semester 1 CHAPTER 12 – 13 – 14 Le Chi Trung.
1 Semester 2 Module 10 Intermediate TCP/IP Yuda college of business James Chen
Copyright 2003 CCNA 1 Chapter 9 TCP/IP Transport and Application Layers By Your Name.
Jaringan Komputer Dasar OSI Transport Layer Aurelio Rahmadian.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 7: Transport Layer Introduction to Networking.
Transport Layer Layer #4 (OSI-RM). Transport Layer Main function of OSI Transport layer: Accept data from the Application layer and prepare it for addressing.
1 7-Oct-15 OSI transport layer CCNA Exploration Semester 1 Chapter 4.
1 Version 3.0 Module 11 TCP Application and Transport.
Chap 9 TCP/IP Andres, Wen-Yuan Liao Department of Computer Science and Engineering De Lin Institute of Technology
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.0 OSI Transport Layer Network Fundamentals – Chapter 4.
University of the Western Cape Chapter 12: The Transport Layer.
TCP/IP Transport and Application (Topic 6)
Routers and Routing Basics CCNA 2 Chapter 10.
TCP1 Transmission Control Protocol (TCP). TCP2 Outline Transmission Control Protocol.
CCNA 1 v3.0 Module 11 TCP/IP Transport and Application Layers.
TCP/IP Honolulu Community College Cisco Academy Training Center Semester 2 Version 2.1.
Transport Layer COM211 Communications and Networks CDA College Theodoros Christophides
Cisco – Chapters Layers 4, 5, and 6 More Details.
Networking Basics CCNA 1 Chapter 11.
Institute of Technology Sligo - Dept of Computing Chapter 12 The Transport Layer.
Chapter 9: Transport Layer
1 © 2004, Cisco Systems, Inc. All rights reserved. CCNA 2 v3.1 Module 10 Intermediate TCP/IP.
Page 12/9/2016 Chapter 10 Intermediate TCP : TCP and UDP segments, Transport Layer Ports CCNA2 Chapter 10.
1 Version 3.1 Module 10 Intermediate TCP/IP (Layer 4)
01_NF_Ch04 – OSI Transport Layer ( 傳輸層 ) Source: CCNA Exploration.
IP1 The Underlying Technologies. What is inside the Internet? Or What are the key underlying technologies that make it work so successfully? –Packet Switching.
© 2002, Cisco Systems, Inc. All rights reserved..
1 Computer Communication & Networks Lecture 23 & 24 Transport Layer: UDP and TCP Waleed Ejaz
McGraw-Hill Chapter 23 Process-to-Process Delivery: UDP, TCP Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Cisco I Introduction to Networks Semester 1 Chapter 7 JEOPADY.
1 14-Jun-16 S Ward Abingdon and Witney College CCNA Exploration Semester 1 OSI transport layer CCNA Exploration Semester 1 Chapter 4.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 1 OSI transport layer CCNA Exploration Semester 1 – Chapter 4.
Chapter 7: Transport Layer
Chapter 9: Transport Layer
Instructor Materials Chapter 9: Transport Layer
CCNA 2 v3.1 Module 10 Intermediate TCP/IP
Process-to-Process Delivery:
Process-to-Process Delivery: UDP, TCP
Presentation transcript:

Intermediate TCP/IP TCP Operation

TCP/IP Transport Layer The primary duties of the transport layer: Segmentation of upper-layer application data Establishment of end-to-end operations Transport of segments from one end host to another end host Flow control provided by sliding windows Reliability with sequence numbers and acknowledgments

Layer 4 – TCP and UDP TCP Connection-oriented Reliable Divides outgoing messages into segments Reassembles messages at the destination station Re-sends anything not received Reassembles messages from incoming segments UDP Connectionless Unreliable Transmits messages (called user datagrams) Provides no software checking for message delivery (unreliable) Does not reassemble incoming messages Uses no acknowledgments Provides no flow control

TCP Segment Format Number of the calling port Number of the called port Used to ensure correct sequencing of the arriving data Next expected TCP octet Number of 32-bit words in the header Number of octets sender is willing to accept Control setup and termination of session set to zero Indicates the end of the urgent data Upper layer protocol data

UDP Segment Format UDP is the connectionless transport protocol UDP uses no windowing and no acknowledgments Error processing and retransmission must be handled by other protocols (application layer) Protocols that use UDP include: TFTP SNMP DHCP DNS

Session Maintanance - Flow Control and Windowing Window size determines the amount of data that you can transmit before receiving an acknowledgment. Expectational acknowledgment means that the acknowledgment number refers to the octet that is next expected. Sliding window refers to the fact that the window size is negotiated dynamically during the TCP session. If the source receives no acknowledgment, it knows to retransmit at a slower rate.

TCP Operation IP provides best-effort delivery. The transport layer (TCP) is responsible for reliability and flow control from source to destination. This is accomplished using: Sliding windows (flow control) Sequencing numbers and acknowledgments (reliability) Synchronization (establish a virtual circuit)

TCP or UDP Identification The IP Packet has a Protocol field that specifies whether the segment is TCP or UDP. Connection-oriented Connectionless

TCP Reliability TCP re-sends anything that is not received and supplies a virtual circuit between end-user applications. The advantage of TCP is that it provides guaranteed delivery of the segments.

Synchronization: 3-Way Handshake TCP Header For a connection to be established, the two end stations must synchronize on each other's initial TCP sequence numbers (ISNs). Sequence numbers are used to track the order of packets and to ensure that no packets are lost in transmission. The initial sequence number is the starting number used when a TCP connection is established. Exchanging beginning sequence numbers during the connection sequence ensures that lost data can be recovered.

Only part of the TCP headers are displayed. Packet 1: source: 130.57.20.10 dest: 130.57.20.1 TCP: ----- TCP header ----- TCP: Source port = 1026 TCP: Destination port = 524 TCP: Initial sequence number = 12952 TCP: Next expected Seq number= 12953 TCP: .... ..1. = SYN TCP: Window = 8192 TCP: Checksum = 1303 (correct) TCP: Maximum segment size = 1460 (TCP Option) Packet 2: source: 130.57.20.1 dest: 130.57.20.10 TCP: ----- TCP header ----- TCP: Source port = 524 TCP: Destination port = 1026 TCP: Initial sequence number = 2744080 TCP: Next expected Seq number= 2744081 TCP: Acknowledgment number = 12953 TCP: .... ..1. = SYN TCP: Window = 32768 TCP: Checksum = D3B7 (correct) TCP: Maximum segment size = 1460 (TCP Option) Packet 3: source: 130.57.20.10 dest: 130.57.20.1 TCP: ----- TCP header ----- TCP: Source port = 1026 TCP: Destination port = 524 TCP: Sequence number = 12953 TCP: Next expected Seq number= 12953 TCP: Acknowledgment number = 2744081 TCP: ...1 .... = Acknowledgment TCP: Window = 8760 TCP: Checksum = 493D (correct) TCP: No TCP options Only part of the TCP headers are displayed.

TCP Three-Way Handshake The client sends a SYN message to the server, indicating the client wishes to communicate with the server. Continued…

TCP Three-Way Handshake The server responds to the client with an ACK message, and a SYN message. Here, the server places the client into the server’s half-open queue, where it waits for the three-way handshake to complete. Continued…

TCP Three-Way Handshake The client responds with an ACK message, completing the handshake. Now, the server moves the client from the half-open queue, freeing resources for new incoming connections to the server.

Simple Windowing (1) TCP Header TCP is responsible for breaking data into segments. With a window size of 1, each segment carries only one byte of data and must be acknowledged before another segment is transmitted. This results in inefficient host use of bandwidth. The purpose of windowing is to improve flow control and reliability. Unfortunately, with a window size of 1, you see a very inefficient use of bandwidth.

Simple Windowing (2) TCP uses a window size, number of bytes, that the receiver is willing to accept, and is usually controlled by the receiving process. TCP uses expectational acknowledgments The acknowledgment number refers to the next byte that the sender of the acknowledgement expects to receive. A larger window size allows more data to be transmitted pending acknowledgment. The sequence number being sent identifies the first byte of data in that segment.

Simple Windowing (3) TCP provides full-duplex service, which means data can be flowing in each direction, independent of the other direction. Window sizes, sequence numbers and acknowledgment numbers are independent of each other’s data flow. Receiver sends acceptable window size to sender during each segment transmission (flow control) If too much data being sent, acceptable window size is reduced If more data can be handled, acceptable window size is increased This is known as a Stop-and-Wait windowing protocol.

Sequencing Numbers The data segments being transmitted must be reassembled once all the data is received. No guarantee that the data will arrive in the order it was transmitted TCP applies sequence numbers to the data segments. Sequencing numbers indicate to the destination device the correct order in which to put the bytes when they are received. These sequencing numbers also act as reference numbers so that the receiver will know if it has received all of the data. They also identify the missing data pieces to the sender so it can retransmit the missing data.

Positive Acknowledgment and Retransmission (PAR) PAR: The source sends a packet, starts a timer, and waits for an acknowledgment before sending the next packet. If the timer expires before the source receives an acknowledgment, the source retransmits the packet and starts the timer over again. TCP uses expectational acknowledgments in which the acknowledgment number refers to the next octet that is expected.

UDP Operation UDP does not use windowing or acknowledgments so application layer protocols must provide error detection. The Source Port field is an optional field used only if information needs to return to the sending host.

UDP Segments

Port Numbers (TCP and UDP)

Port Numbers Port nos. are used to keep track of different conversations that cross the network at the same time. Port nos. allow for multiplexing of upper-layer conversations. Port nos. are used as source and destination addresses in the TCP segment. Port nos. below 1024 are considered well-known. Port nos. above 1024 are dynamically assigned. Registered port nos. are for vendor-specific applications (Most are above 1024)

Port Numbers TCP Header Application software developers have agreed to use the well-known port numbers that are defined in RFC 1700. For example, any conversation bound for an Telnet application uses the standard port number 23.

Standard Port Numbers Conversations that do not involve an application with a well-known port number are, instead, assigned port numbers that are randomly selected from within a specific range. These port numbers are used as source and destination addresses in the TCP segment. Some ports are reserved in both TCP and UDP, although applications might not be written to support them.

The Dynamic and/or Private Ports are those from 49,152 through 65,535 Standard Port Numbers The Well-Known Ports are assigned by the IANA and on most systems can only be used by system (or root) processes or by programs executed by privileged users. Ports 0 – 1,023 http://www.iana.org/assignments/port-numbers The Registered Ports are listed by the IANA and on most systems can be used by ordinary user processes or programs executed by ordinary users. The IANA registers uses of these ports as a convenience to the community. Ports 1,024 – 49,151 The Dynamic and/or Private Ports are those from 49,152 through 65,535

Port Numbers TCP Header End systems use port numbers to select the proper application. Originating source port numbers, usually a value larger than 1023, are dynamically assigned by the source host.

TCP Header Notice the difference in how source and destination port numbers are used with clients and servers: Client: Destination Port = 23 (telnet) Source Port = 1028 (dynamically assigned) Server: Destination Port = 1028 (source port of client) Source Port = 23 (telnet)

Second http session from the between the same client and server Second http session from the between the same client and server. Same destination port, but different source port to uniquely identify this web session. Dest. Port = 80 Send packets to web server application http to www.cisco.com Dest. Port = 80 Send packets to web server application http to www.cisco.com 1030 80 1031 80 This example shows two separate browser windows to the same URL. TCP/IP uses source port numbers to know which information goes to which window.

What makes each connection unique? Connection defined by the pair of numbers: Source IP address, source port Destination IP address, destination port Different connections can use the same destination port on server host as long as the source ports or source IP addresses are different.