Bio 127 - Section III Organogenesis Paraxial and Intermediate Mesoderm Gilbert 9e – Chapter 11.

Slides:



Advertisements
Similar presentations
Dr. Ahmed Fathalla Ibrahim Associate Professor of Anatomy College of Medicine King Saud University Dr. Zeenat Zaidi Associate.
Advertisements

Dr Jamila EL Medany. OBJECTIVES At the end of the lecture, students should be able to:  List the different parts of mesoderm and the different divisions.
Steps in setting up the Nervous system Induction and Patterning of a neuron-forming region Birth and migration of neurons and glia Specification of cell.
HUMAN EMBRYONIC PERIOD
Bilaminar & Trilaminar Embryonic Disc
PART 1 Basic Embryology.
Embryonic Development of the Human Neurological System Chapter 4.
BILAMINAR -TRILAMINAR DISCS & THEIR DERIVATIVES
EMBRYOLOGY Basic morphogenetic processes Processes which are involved in development Proliferation – mitotic division - growth Apoptosis – reduction.
Paraxial and Intermediate Mesoderm Formation of Somites Muscle and bone formation Intermediate mesoderm: Kidney formation.
Gastrulation The goal is to form three GERM LAYERS (starting from a hollow ball of cells) Ectoderm: Outside skin, nerves Mesoderm: Blood, Muscle, some.
I. Gut Formation and Derivatives
Gastrulation, Neurulation and Folding
Organogenesis(1). Somitogenesis and derivatives of somites M.A.Kai-Kai.
Neural Crest Cells and Axonal Specificity. Neural Crest ► Where is the neural crest located and why is this region so important?
Chapter 12- CNS and epidermis
Chapter 14- Mesoderm-paraxial and intermediate Recall lineages: Fig Fig mesoderm lineages Fig mesoderm lineages in chick 24hr 48hr.
Chapter 14- Mesoderm-paraxial and intermediate
Notogenesis, neurulation, somitogenesis
Embryology – study of the origin and development of single individual
By Dr. SAMINA ANJUM. DERIVATIVES OF MESODERMAL GERM LAYER.
Prof. Ahmed Fathalla Ibrahim Professor of Anatomy College of Medicine King Saud University
The First Three Weeks of Human Embryogenesis
MESODERM INTRODUCTION. (epimere) (hypomere) (mesomere) (nephrotome) Major mesodermal regions Amphibians.
MESODERMAL DERIVATIVES By: Dr. Mujahid Khan. Derivatives  Connective tissue  Cartilage  Bone  Striated & smooth muscles  Heart  Blood & lymphatic.
Development of Skeletal System & Limbs Dr. Sama ul Haque Dr. Rania Gabr.
Chapter 12- CNS and epidermis Ectoderm-skin/nerves Endoderm- Gut and associated organs Mesoderm-Blood, heart, kidney, bones Recall lineages Now we focus.
Histogenesis 151 Course 5: Cells and tissue development.
بسم الله الرحمن الرحيم.
Cell-Cell Communication  Modes of Cellular Adhesion  Movement of Cells/Tissues  We’re here, now what? Cell Signaling and differentiation  Contacting.
BILAMINAR -TRILAMINAR DISCS & THEIR DERIVATIVES
Paraxial and Intermediate Mesoderm Lange BIOL 370 – Developmental Biology Topic #14.
Development of Spinal Cord & Vertebral Column
Prof. Ahmed Fathalla Ibrahim Professor of Anatomy College of Medicine King Saud University
ANIMAL DEVELOPMENT CH. 47 MECHANISMS OF MORPHOGENESIS AND CELL FATE 1.
Intraembryonic Mesoderm
Presentation 24 Neural Development
Formation of germ layers. FERTILIZATION AND STEM CELLS The oocyte (female gamete) is released from the ovary and then "pulled" into the ampulla of the.
Paraxial and Intermediate Mesoderm. Mesodermal Regions Into what five regions do we subdivide the mesoderm? –prechordal plate mesoderm –chordamesoderm.
Development of the Tetrapod Limb - Placement on the Axis, Forelimb Vs
Embryology Review.
Cleavage, blastula, gastrula, neurula
By DR. SANAA ALSHAARAWY DR. ESSAM ELDIN SALAMA.  OBJECTIVES :  At the end of the lecture, the student should be able to describe :  Changes in the.
Intermediate Mesoderm: Kidney and Gonad Development Gilbert: Chapter 14, 17.
Dr. Ahmed Fathalla & Dr. Zeenat Zaidi. OBJECTIVES At the end of the lecture, students should be able to:  List the different parts of mesoderm and the.
14.20 Signals from the paraxial mesoderm induce pronephros formation in the intermediate mesoderm of the chick embryo (Part 1)
The fate of neural crest cells The mesoderm Sex determination
Chapter 1: Skeletal Morphogenesis and Embryonic Development Yingzi Yang.
Somite Derivatives: Muscle and Bone Formation Gilbert - Chapter 14.
Bone can be formed in two ways: Direct mineralization of matrix secreted by osteoblasts. Deposition of bone matrix on a preexisting cartilage matrix. Intramembranous.
Intraembryonic Mesoderm
Gastrulation and Neurulation (3rd and 4th Week of Human Development)
Gastrulation, Neurulation and Folding
DEVELOPMENT OF SKELETAL & MUSCULAR SYSTEM
Paraxial and Intermediate mesoderm
Third week of Embryological development
Gastrulation, Neurulation and Folding
BILAMINAR -TRILAMINAR DISCS & THEIR DERIVATIVES
Anatómiai, Szövet- és Fejlődéstani Intézet
PART 2 Basic Embryology.
The fate of neural crest cells
The typical spinal nerve
Paraxial mesoderm and somitogenesis
PART 1 Basic Embryology.
Somites are transient segmented structures derived from paraxial mesoderm. contain the progenitors of the axial skeleton, trunk musculature and.
Embryology; Development of the skull and bones
Figure 1 Key embryogenic decision points during kidney development
Development of the Urinary System
Development of Spinal Cord & Vertebral Column
DEVELOPMENT OF VERTEBRAL COLUMN & SPINAL CORD
Presentation transcript:

Bio Section III Organogenesis Paraxial and Intermediate Mesoderm Gilbert 9e – Chapter 11

Organogenesis Encompasses : The Emergence of the Ectoderm Neural Crest Cells and Axonal Specificity Paraxial and Intermediate Mesoderm Lateral Plate Mesoderm Endoderm

Student Learning Objectives 1. You should understand that the mesoderm forms all of the organs between the ectodermal wall and the endodermal tissues. 2. You should understand that the paraxial mesoderm forms structures at the back of the embryo surrounding the spinal cord, including the somites and their derivative cartilage, bone, muscle and dermis. 3. You should understand that the intermediate mesoderm forms the structures of the urogenital tract, including the kidneys, gonads, ductwork and the adrenal cortex. 4. You should understand that the mesoderm helps both the ectoderm and the endoderm form their own tissues.

The mesoderm forms during gastrulation and neurulation, same as ectoderm

Major lineages of the mesoderm Somite Terminology: sclerotome: vertebral and rib cartilage myotome: muscles of back, rib cage, abdomen dermamyotome: dermal cells, limb muscle syndetome: most dorsal, tendons arthrotome: most central, vertebral joints/discs, proximal ribs “unnamed”: most posterior, dorsal aorta and intervertebral arteries

Paraxial mesoderm is made up of head mesoderm and somites We’ll look closely at the somites.... The head mesoderm forms the muscles and connective tissues of the head and eyes. It even forms under the direction of different transcription factors and suffers different disease states.

Somitogenesis 1.Establishment of periodicity 2.Fissure formation (separation) 3.Epithelialization 4.Specification 5.Differentiation

Somitogenesis: Periodicity Periodic formation of somites is inherant to the cells of the mesoderm Every 90 minutes in chick (less exact in mice) Total of 50 in chick 65 in mice 500 in snakes Notch and Wnt signals oscillate like a clock FGF signals sweep rostral-to-caudal in wave

Delta-Notch are expressed at presumptive boundaries Delta-Notch dictates WHERE a somite will form

Notch controls the wavelike expression of hairy1 The posterior edge is the edge that signals separation Where Notch is expressed Hairy-1 stays on long-term

Fissure Formation: Separation from unsegmented mesoderm The FGF wavefront sets up an oscillation in Wnt and Notch signaling as it passes Notch expression gives final position of Hairy-1 Hairy-1 causes Ephrin expression which repels neighbors (remember how Ephrin repelled motor axons here also)

Epithelialization of somites That same posterior edge starts mesenchymal to epithelial transition - N-cadherin - rho family - actin change

Specification of paraxial mesoderm occurs early due to Hox expression.... transplants form what they would have in original position

Determination and differentiation in somites All of the cells of the somite are competent to form all of the derivative cell types –cartilage, bone, muscle, tendons, dermis, vascular cells, meninges Their fate depends on their position near the neural tube, notochord, epidermis and intermediate mesoderm

Determination and differentiation in somites First step is notochord induction of sclerotome Epithelial to mesenchymal transition causes them to migrate to form vertebral cartilage, leaves dermamyotome epithelium

Determination and differentiation in somites The second step is the segregation of dermamyotome Central and bilateral myotome surrounds dermatome

Determination and differentiation in somites Dermatome forms back dermis, brown fat - Primaxial myotome forms back and intercostal muscles - Abaxial myotome forms abdominal muscle, tongue, limbs - Central myotome proliferates madly and makes most cells

Figure Primaxial and abaxial domains of vertebrate mesoderm (Part 2)

Mechanisms of Tissue Formation from Somites Myogenesis: Muscle Formation Osteogenesis: Bone Formation Vascular Replacement in the Dorsal Aorta The Syndetome: Tendon Formation

Myogenesis: Muscle Formation The paraxial, abaxial and central somite Cells in the center give rise to satellite cells –maybe stem cells, maybe committed progenitors –remain viable for the life of the organism –exit cell cycle upon injury and differentiate to muscle Classic skeletal muscle differentiation –paracrine signals induce MyoD, Myf-5 –TFs for muscle genes and for themselves!

Myogenesis: Muscle Formation muscle satellite cells don’t express MyoD until injury Adult muscle cells (myotubes) are large and multinucleated

Myogenesis: Muscle Formation

In culture it doesn’t matter what species you place together they will fuse.

Osteogenesis: Bone Formation Four different sources of bone: –Somites form the axial skeleton –Lateral plate mesoderm form the limb skeleton –Cranial neural crest forms the bones of face and head –Mesodermal mesenchyme in patella, periosteum Two different processes: –Endochondrial ossification in the first two –Intramembraneous ossification in the second two

Osteogenesis: Bone Formation Endochondrial literally means “within cartilage” - vertebrae - ribs - pelvis - limbs Shh bone model hypertrophic chondrocytes leave cell cycle, enlarge, calcify their ECM and then apoptose

Osteogenesis: Bone Formation The calcified ECM plus Ihh cause bone cells (osteoblasts) to differentiate from somite progenitors The step-wise progression continues out away from the center – “growth plates” Bone growth ceases when the secondary center finishes up The center is remodeled by osteoclasts from the blood to form marrow

Osteogenesis: Bone Formation No calciumNormal bone formation

Endochondrial Ossification of Vertebrae 1. Sclerotome mesenchyme are attracted by notochord and neural tube secretions 2. As motor axons extend toward muscles they go through sclerotome and split them rostral-to-caudal The caudal end of one then recombines with the rostral end of the next to form the bone model and then bone

Vascular Replacement in the Dorsal Aorta Blood vessels are a single layer of endothelium surrounded by multiple layers of smooth muscle The dorsal (or descending) aorta forms a primary model by vasculogenesis and then both the endothelium and smooth muscle are replaced by somite. (the same thing happens to the ascending aorta by neural crest cells!)

The Syndetome: Tendon Formation Tendon joins bone to muscle. The last row of sclerotome is induced by the overlying myotome to differentiate into those connectors.

Formation of the Kidneys from Intermediate Mesoderm The adult kidney is very complex –A single nephron has 10,000 cells, 12 cell types –Each is positioned exactly for its job relative to others The embryo increasingly needs to filter blood –IM mesoderm 1 st forms organizer, the pronephric duct –This tissue then induces three stages of kidney –The first two are transitory, the third persists

General scheme of development in the vertebrate kidney Nephric duct is the primitive organizer: Wolffian Duct Pronephros is functional in fish, amphibians, not in mammals, then degenerates Mesonephros is functional in some mammals, including humans, degenerates in females, forms epididymous and vas deferens.

Metanephros formed by reciprocal induction with Wolffian Duct Intermediate mesoderm mesenchyme develops into kidney, while....

Figure Kidney induction observed in vitro....the Wolffian Duct matures into the collecting duct