Lightning and Tornadoes. Thunderstorms: brief review There are two basic types of thunderstorm cells: ordinary cells and supercells. Ordinary cell thunderstorms.

Slides:



Advertisements
Similar presentations
Weather Maps & Fronts Refers to the state of the atmosphere at a specific time and place. Influenced by pressure systems (high and low) and fronts. Describes.
Advertisements

Severe Weather Thunderstorms Lightening & Tornadoes
Dr. Hooda Text Book : Pages A violent disturbance in the atmosphere.
Text Book : Pages A violent disturbance in the atmosphere.
Science ~ chapter 8 weather
Thunderstorms.
Stability and Severe Storms AOS 101 Discussion Sections 302 and 303.
Chapter 7: Atmospheric Disturbances Part II: T-storms, Tornadoes, Lightning & Forecasting.
Thunderstorms. Thunderstorm Frequency See Figure in text.
Thunderstorms One of Natures Most Exotic Events Unlike ordinary rain storms, thunderstorms have a delicate balance of airborne water vapor that is whipped.
NATS 101 Lecture 28 Lightning. Review: Thunderstorms A cumulonimbus with lightning and thunder! Deep layer of conditionally unstable air is necessary.
Class #9: Monday, July 19 Thunderstorms and tornadoes Chapter 14 1Class #9, Monday, July 19, 2010.
Weather and Climate Part 3 - Violent Storms CGF3M Crescent School Text source:
Severe Weather.
Chapter 14. Thunderstorms  A storm containing lightening and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
Part 4. Disturbances Chapter 11 Lightning, Thunder, and Tornadoes.
Weather.
Chapter 10: Thunderstorms II Met 10. A downburst is a downdraft that spreads out horizontally from the base of a thunderstorm. A downburst with winds.
Storms and Weather Forecasts
THUNDERSTORMSAnd SEVERE WEATHER SEVERE WEATHER. What’s in a Name? Cyclone refers to the circulation around a low-pressure center Cyclone refers to the.
13 The Nature of Storms Section 13.1: Thunderstorms
Lightning “Thunder is good, thunder is impressive; but it is lightning that does the work.” Mark Twain--
Unit 4 – Atmospheric Processes. Necessary Atmospheric Conditions 1. Water vapour must be available in the lower atmosphere to feed clouds and precipitation.
Storms Thunderstorms Tornados Flash Floods And Hurricanes.
Thunderstorms and Tornadoes Last Lecture: We looked at severe weather events in the lower latitudes Principal weather event is the formation and movement.
Unit 4 Lesson 4 Severe Weather and Weather Safety
11C-1 Thunderstorms 40,000 each day on earth 40,000 each day on earth Most common violent storm Most common violent storm Small (few km in diameter) Small.
Severe Weather. Thunderstorms Small intense systems that can produce strong winds, rain, lightning and thunder. Need 2 conditions –Air near surface needs.
a large body of air that has the same temperature and humidity throughout classified according to where they originate during the time the air mass.
Severe Weather.
Weather Patterns (57) An air mass is a large body of air that has properties similar to the part of Earth’s surface over which it develops. Six major air.
Severe Weather Storms Thunderstorms Tornadoes Hurricanes.
For clouds to form, air must be lifted Frontal Convectional Orographic.
Severe Weather: Thunderstorms and Tornadoes EQ: What can we learn from severe weather to help prevent other disasters? (What can we do to keep safe?)
Weather Patterns Air Mass: A large body of air that has properties similar to the part of Earth’s surface over which it develops. Air masses cover thousands.
The Nature of Storms There are 3 Stages of a thunderstorm:
Chapter 10. Thunderstorms  A storm containing lightning and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
Thunderstorms.
MET 125 Physical Meteorology
Storms.
Chapter 17 Section 2 Severe Weather.
-Thunderstorms, hurricanes, tornadoes, blizzards, typhoons, cyclones -Dangerous to people, structures, and animals.
Severe Weather Thunderstorms, Tornadoes, and Hurricanes.
a large body of air that has the same temperature and humidity throughout classified according to where they originate during the time the air mass.
Weather Patterns. Weather Changes Because of the movement of air and moisture in the atmosphere weather constantly changes.
How Do Storms Form? Clouds 3 main types – Cumulus – Cirrus – Stratus – cumulonimbus.
Thunderstorms (Tormenta) and Tornadoes After completing this section, students will discuss the formation of violent weather patterns such as thunderstorms.
4.3 Severe Weather Pages (R) Severe Weather Pages
Severe Weather. There are many types including:  Lots of rain  Lightning  Hurricanes  Hail  Tornadoes  Cyclones  Blizzards.
HURRICANES, TORNADOES & THUNDERSTORMS
An air mass is a large body of air that has properties similar to the part of Earth’s surface over which it develops. Weather Changes—Air Masses Six major.
 A usually brief, heavy storm that consists of rain, strong wind, lightning, and thunder.
Weather Overview: Tornados, Hurricanes, Precipitation, Floods, Etc
EASC 11 Forecasting, Weather Maps, and Severe Storms Forecasting
Hurricanes, Tornadoes, and Thunderstorms and Lightning
Storms.
FIGURE A microwave pulse is sent out from the radar
Storms Chapter 13.
Thunderstorms, Tornadoes, and Hurricanes
Storms.
Weather Patterns and Severe Storms
Bellwork 5/11 Happy Friday!! 
Warm-up Explain the difference between climate and weather.
Thunderstorms, Tornadoes, Hurricanes & Winter Storms
Lightning and Tornadoes
Thunderstorms Small intense systems that can produce strong winds, rain, lightning and thunder. Need 2 conditions Air near surface needs to be warm and.
Lightning and Tornadoes
Lightning and Tornadoes
Lightning and Tornadoes
Weather Patterns and Severe Storms
Presentation transcript:

Lightning and Tornadoes

Thunderstorms: brief review There are two basic types of thunderstorm cells: ordinary cells and supercells. Ordinary cell thunderstorms tend to form where warm, humid air rises in a conditionally unstable atmosphere and where vertical wind shear is weak. They are usually short-lived and go through their life cycle of growth (cumulus stage), maturity (mature stage) and decay (dissipating stage) in less than an hour. They rarely produce severe weather. As wind shear increases (and the winds aloft become stronger) thunderstorms are more likely to become severe and produce strong surface winds, large hail, heavy rain, and even tornadoes. The cells that comprise a multicell thunderstorm can be ordinary or supercell. A squall line is a long line of multicell thunderstorms that may form along a frontal boundary or out ahead of it. A Mesoscale Convective Complex is a large circular cluster of multicell thunderstorms. Flooding: typically in the spring, when the snow is melting and the rivers are full. Flash floods: floods that rise rapidly with little or no advance warning.

Lightning What is it? An electrical discharge – a giant spark! Compare to: Plasma ball in the lobby outside

Electricity 101 Particles may carry positive or negative charge. Opposite charge particles attract each other Same charge particles repel each other Electrons are negatively charged. They are very mobile. Nuclei are positively charged. Molecules are made up of nuclei and electrons. They have no net charge. Ions are molecules which have gained or lost electrons: they can have a negative or a positive net charge. The motion of the charges results in electrical current

Charging a Thundercloud Raindrops, snow crystals and hail stones collide inside the cloud. During these collisions they may exchange electrons and ions. The exact mechanism is not well understood, but the bottom line is: ♦ Larger particles become negatively charged. ♦ Smaller particles become positively charged. Larger particles settle down to the bottom of the cloud. Smaller particles are lifted to the top of the cloud by strong updrafts. Note precipitation area: void of large particles -> positively charged.

Type of Discharges Cloud-to-ground ♦ 90% of the time: negative cloud to positive ground ♦ 10% of the time: positive cloud to negative ground Cloud-to-cloud: between oppositely charged regions of different clouds. Cloud-to-atmosphere: self-explanatory Base-to-top: discharge within the same cloud

If all the charges are in the cloud why does the lightning strike the ground? The negative charges at the bottom of the cloud repel the electrons on the ground beneath the cloud. The ground just below the cloud is then positively charged (notice the tree). The ground away from the cloud will be negatively charged with excess electrons (not shown) which came from (used to be in) the tree Once the accumulated charges become large enough some electrons will “jump” to the ground. A current starts to flow. The molecules in the atmosphere below the cloud are bombarded with flying electrons. They become excited and then emit light (we see a spark).

Stages of Cloud-to-Ground Lightning. The lightning is initiated with a flow of electrons from the base of the cloud towards the ground (stepped leader) When the leader gets close to the ground a flow of positive charges surges upwards. When they meet a strong current (return stroke) transfers a charge between the cloud and the ground. The process can be repeated several times in the same channel (dart leader, return stroke…) 12 3

Lightning Varieties Forked lightning: when the dart leader deviates from the original path of the stepped leader Ribbon lightning: when a strong wind shifts the ionized channel between successive return strokes Bead lightning: when the ionized channel breaks up Ball lightning: a floating luminous sphere Sheet lightning: when the flash is inside or obscured by a cloud Dry lightning: when there is lightning but no precipitation Heat lightning: distant lightning which is not heard. Since it happens very far, its short-wavelength light is scattered and it appears orange (recall setting sun).

Different Types of Lightning Heat lightning Forked lightning Ribbon lightning Bead lightning

Different Types of Lightning Ball Cloud-to-ground Sheet Cloud discharge

Other lightning phenomena St. Elmo’s fire. Corona discharge at the top of antennas or ship masts. Fulgurite: fused sand particles as a result of the strong heating at the location of the lightning stroke. Cloud-to-upper atmosphere lightning ♦ Elves, red sprites, blue jets

Thunder We see the light emitted from the air molecules as they become excited from the electrical discharge. The thunder is the sound that accompanies the lightning. It results from the fast expansion of the gas that is heated to high temperatures from the electrical discharge. Sound propagates much slower than light V(sound) = 330 m/s V(light in vacuum) = 300,000,000 m/s That is why we hear the thunder long after the lightning How far is the lightning? Count the seconds between the flash and the thunder. Each second is worth 330m~1000ft. What if there is no thunder? Sometimes the sound wave is reflected or absorbed while traveling through the air and may not reach us Sonic boom: just a jet going supersonic.

In case of a thunderstorm: If outdoors: ♦ Seek shelter inside, preferably inside a building with a lightning rod ♦ If not, stay inside the car ♦ Do not stay under trees. ♦ If hiking above the treeline, descend immediately. ♦ It is NOT safe to be in a tent, small picnic shelters, near heavy machinery. If indoors: ♦ Stay away from water, plumbing, doors and windows ♦ Do not use land line telephones. ♦ Turn off, unplug, and stay away from appliances, computers, power tools, TVs. ♦ Consider purchasing a heavy duty surge protector ♦ Bring pets inside - especially dogs chained to trees Lightning safety awareness week ♦ June 24-30, 2007.

US Map of Lightning Distribution

Lightning distribution worldwide

Tornadoes: Some Statistics Tornado is a rapidly rotating column of air around an intense low pressure center that touches the ground. The rotation is typically cyclonic (counterclockwise) in the NH. In the US there are about 1000 tornadoes a year. On average there are about 100 tornado casualties a year. Most occur in the tornado alley that runs through the central plains Tornado season: March-July ♦ Spring in the south; ♦ Summer in the north. Conditions: ♦ Unstable atmosphere: warm humid air below, cool dry air aloft ♦ Strong wind shear. Most likely time of the day: late afternoon (the atmosphere is most unstable) Typical diameter: m, extreme cases ~ 4 km Typical wind speed: mi/h Typical duration: a few minutes to several hours.

Tornado Occurrences in the US Number of tornadoes within a 25 year period ♦ Upper figure: total per state ♦ Lower figure: annual rate per state per 10,000 sq. miles

Fujita Scale for Tornadoes

Severe Weather and Doppler Radar A Doppler Radar uses radio waves To measure precipitation it measures the intensity of the reflected radio waves. To measure wind speed it measures the frequency of the reflected radio waves Doppler effect: the change of the wave frequency as the object moves – the siren of an ambulance has a higher pitch when it is approaching. Cannot measure the speed of parallel winds: need 2 radars Doppler radar can reveal a Tornado Vortex Signature (TVS).

Not a real tornado: Waterspout (see active figure) Funnel cloud Wall cloud Landspout Dust-tube tornado

Most famous tornado of all times It’s a twister! It’s a twister!