Week 9 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz

Slides:



Advertisements
Similar presentations
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Advertisements

Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Week 91 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Class 4 – Some applications of revenue equivalence
CPS Bayesian games and their use in auctions Vincent Conitzer
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Auctions. Strategic Situation You are bidding for an object in an auction. The object has a value to you of $20. How much should you bid? Depends on auction.
Intermediate Microeconomics Midterm (50%) (4/27) Final (50%) (6/22) Term grades based on relative ranking. Mon 1:30-2:00 ( 社科 757)
Bidding Strategy and Auction Design Josh Ruffin, Dennis Langer, Kevin Hyland and Emmet Ferriter.
Auctions Auction types: –First price, sealed bid auction –Second price, sealed bid auction –English auction (ascending bid auction) –Dutch auction (descending.
Econ 805 Advanced Micro Theory 1 Dan Quint Fall 2007 Lecture 2 – Sept
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Welcome Auctions Jonathan D. Wareham
Auctions An auction is a mechanism for trading items by means of bidding. Dates back to 500 BC where Babylonians auctioned of women as wives. Position.
Auction. Types of Auction  Open outcry English (ascending) auction Dutch (descending) auction  Sealed bid First-price Second-price (Vickrey)  Equivalence.
Private-value auctions: theory and experimental evidence (Part I) Nikos Nikiforakis The University of Melbourne.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Auctions. An auction is a process of buying and selling goods or services by offering them up for bid ( The price at which a buyer is willing to close.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Mechanism Design and the VCG mechanism The concept of a “mechanism”. A general (abstract) solution for welfare maximization: the VCG mechanism. –This is.
Week 21 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Week 2 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 1 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
1 Teck-Hua Ho April 18, 2006 Auction Design I. Economic and Behavioral Foundations of Pricing II. Innovative Pricing Concepts and Tools III. Internet Pricing.
Chapter Seventeen Auctions. Who Uses Auctions? u Owners of art, cars, stamps, machines, mineral rights etc. u Q: Why auction? u A: Because many markets.
Week 7 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
1 Teck-Hua Ho April 22, 2006 Auction Design I. Economic and Behavioral Foundations of Pricing II. Innovative Pricing Concepts and Tools III. Internet Pricing.
VAMSEE KONERU PRADNYA SUTE
Week 31 COS 444 Internet Auctions: Theory and Practice Spring 2010 Ken Steiglitz
Week 5 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 8 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 71 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Week 4 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Auctions Hal R. Varian. Auctions Auctions are very useful mean of price discovery eBay: everyone’s favorite example DoveBid: high value asset sales at.
Session 4 Pricing Strategy Managerial Economics Professor Changqi Wu.
Week 41 COS 444 Internet Auctions: Theory and Practice Spring 2010 Ken Steiglitz
Week 51 COS 444 Internet Auctions: Theory and Practice Spring 2010 Ken Steiglitz
Week 61 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Week 3 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
and Lecture Notes in Game Theory1 Game Theory Applications: Lecture Notes Course Website u Galina.
Topics in the border of economics and computation seminar Presented by: Avinatan Hasidim Yair Weinberger Gabrielle Demange, David gale, Matilda Sotomayor.
Week 81 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Chapter 19 Equivalence Types of Auctions Strategic Equivalence
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
IELM 231: IT for Logistics and Manufacturing Course Agenda Introduction IT applications design: Human-Computer Interface Fundamental IT tools: sorting,
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Econ 805 Advanced Micro Theory 1 Dan Quint Fall 2007 Lecture 3 – Sept
Auctions An auction is a mechanism for trading items by means of bidding. Dates back to 500 BC where Babylonians auctioned of women as wives. Position.
Steffen Staab 1WeST Web Science & Technologies University of Koblenz ▪ Landau, Germany Network Theory and Dynamic Systems Auctions.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Incomplete Information and Bayes-Nash Equilibrium.
Risk Aversion and Optimal Reserve Prices in First and Second-Price Auctions Audrey Hu University of Amsterdam Stephen A. Matthews University of Pennsylvania.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Bayesian games and their use in auctions
COS 444 Internet Auctions: Theory and Practice
CPS Bayesian games and their use in auctions
Presentation transcript:

week 9 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz

week 92 Theory: Riley & Samuelson 81 Quick FP equilibrium with reserve: which gives us immediately: Example …

week 93 Theory: Riley & Samuelson 81 Revenue at equilibrium: = “marginal revenue” = “virtual valuation”

week 94 Theory: Riley & Samuelson 81 Optimal choice of reserve let v 0 = value to seller let v 0 = value to seller Total revenue = Total revenue = Differentiate wrt v * and set to zero 

week 95 Reserves The seller chooses reserve b 0 to achieve a given v *. The seller chooses reserve b 0 to achieve a given v *. In first-price and second-price auctions (but not in all the auctions in the Riley- Samuelson class) v * = b 0. In first-price and second-price auctions (but not in all the auctions in the Riley- Samuelson class) v * = b 0. Proof: there’s no incentive to bid when our value is below b 0, and an incentive to bid when our value is above b 0. Proof: there’s no incentive to bid when our value is below b 0, and an incentive to bid when our value is above b 0.

week 96 Reserves Setting reserve in the second- and first- price increases revenue through entirely different mechanisms: Setting reserve in the second- and first- price increases revenue through entirely different mechanisms: o In first-price auctions bids are increased. o In second-price auctions it’s an equilibrium to bid truthfully, but winners are forced to pay more.

week 98 All-pay with reserve Set E[ pay ] from Riley & Samuelson 81 = b ( v ) ! For n=2 and uniform v’s this gives For n=2 and uniform v’s this gives b( v ) = v 2 /2 + v * 2 /2 b( v ) = v 2 /2 + v * 2 /2 Setting E[ surplus at v * ] = 0 gives Setting E[ surplus at v * ] = 0 gives b( v * ) = v * 2 b( v * ) = v * 2 Also, b( v * ) = b 0 (we win only with no competition, so bid as low as possible) Also, b( v * ) = b 0 (we win only with no competition, so bid as low as possible)  Therefore, b 0 = v * 2 (not v * as before)

week 910 Loser weeps auction, n=2 Winner gets item for free, loser pays his bid! Gives us reserve in terms of v * (evaluate at v * ): b 0 = v * 2 / (1-v * ) … using b( v * ) = b 0 b 0 = v * 2 / (1-v * ) … using b( v * ) = b 0 E[pay] of R&S 81 then leads directly to equilibrium

week 912 Santa Claus auction, n=2 Winner pays her bid Winner pays her bid Idea: give people their expected surplus and try to arrange things so bidding truthfully is an equilibrium. Idea: give people their expected surplus and try to arrange things so bidding truthfully is an equilibrium. Give people Give people Prove: truthful bidding is a SBNE … Prove: truthful bidding is a SBNE …

week 913 Santa Claus auction, con’t Suppose 2 bids truthfully. Then ∂∕∂b = 0 shows b=v

week 914 Matching auction: not in A rs Bidder 1 may tender an offer on a house, Bidder 1 may tender an offer on a house, b 1 ≥ b 0 = reserve b 1 ≥ b 0 = reserve Bidder 2 currently leases house and has the option of matching b 1 and buying at that price. If bidder 1 doesn’t bid, bidder 2 can buy at b 0 if he wants Bidder 2 currently leases house and has the option of matching b 1 and buying at that price. If bidder 1 doesn’t bid, bidder 2 can buy at b 0 if he wants

week 915 Matching auction, con’t To compare with optimal auctions, choose v * = ½ To compare with optimal auctions, choose v * = ½ Bidder 2’s best strategy: Match b 1 iff Bidder 2’s best strategy: Match b 1 iff v 2 ≥ b 1 ; else bid ½ iff v 2 ≥ ½ v 2 ≥ b 1 ; else bid ½ iff v 2 ≥ ½ Bidder should choose b 1 ≥ ½ so as to maximize expected surplus. Bidder should choose b 1 ≥ ½ so as to maximize expected surplus. This turns out to be b 1 = ½ … This turns out to be b 1 = ½ …

week 916 Matching auction, con’t Choose v * = ½ for comparison Choose v * = ½ for comparison Bidder 1 tries to max Bidder 1 tries to max (v 1 -b 1 )·{prob. 2 chooses not to match} (v 1 -b 1 )·{prob. 2 chooses not to match} = (v 1 -b 1 )·b 1 = (v 1 -b 1 )·b 1  b 1 = 0 if v 1 < ½  b 1 = 0 if v 1 < ½ = ½ if v 1 ≥ ½ = ½ if v 1 ≥ ½

week 917 Matching auction, con’t Notice: Notice: When ½ < v 2 < v 1, bibber 2 gets the item, but values it less than bidder 1  inefficient! When ½ < v 2 < v 1, bibber 2 gets the item, but values it less than bidder 1  inefficient! E[revenue to seller] turns out to be 9/24 (optimal in A rs is 10/24; optimal with no reserve is 8/24) E[revenue to seller] turns out to be 9/24 (optimal in A rs is 10/24; optimal with no reserve is 8/24)  Why is this auction not in A rs ?  Why is this auction not in A rs ?

Risk-averse bidders

week 919 Revenue ranking with risk aversion Result: Suppose bidders’ utility is concave. Then with the assumptions of A rs, Result: Suppose bidders’ utility is concave. Then with the assumptions of A rs, R FP ≥ R SP R FP ≥ R SP Proof: Let γ be the equilibrium bidding function in the risk-averse case, and β in the risk-neutral case. Proof: Let γ be the equilibrium bidding function in the risk-averse case, and β in the risk-neutral case.

week 920 Revenue ranking, con’t In first-price auction, E[surplus] = W (z )·u (x − γ (z ) ) E[surplus] = W (z )·u (x − γ (z ) ) where we bid as if value = z, W(z) is prob. of winning, … etc.

week 921 Constant relative risk aversion (CRRA) Defined by utility u(t) = t ρ, ρ < 1 u(t) = t ρ, ρ < 1 First-price equilibrium can be found by usual methods ( u/u’ = t/ρ helps): ( u/u’ = t/ρ helps):  Very similar to risk-neutral form. As if there were (n-1)/ρ instead of (n-1) rivals!