Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.

Slides:



Advertisements
Similar presentations
PHASES OF SWIFT X-RAY AFTERGLOWS ( properties and theoretical interpretation ) A. Panaitescu Los Alamos National Laboratory.
Advertisements

Recent Advances in our Understanding of GRB emission mechanism Pawan Kumar Outline † Constraints on radiation mechanisms ♪ High energy emission from GRBs.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Gamma-Ray Burst models Theory of prompt and afterglow emission Robert Mochkovitch (Institut d’Astrophysique de Paris) 10th Rencontres du Vietnam August.
Episodic magnetic jets as the central engine of GRBs Feng Yuan With: Bing Zhang.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Yun-Wei YU 俞云伟 June 22, 2010, Hong Kong. Outline  Background  Implications from the shallow decay afterglows of GRBs  A qualitative discussion on magnetar.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Optical Emission Components of Gamma-Ray Burst Phenomenon Enwei Liang GXU-NAOC Center for Astrophys. & Space Sci. Co-authors: Liang Li (GXU), Shuangxi.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
GRB afterglows in the Non-relativistic phase Y. F. Huang Dept Astronomy, Nanjing University Tan Lu Purple Mountain Observatory.
Modeling the X-ray emission and QPO of Swift J Fayin Wang ( 王发印) Nanjing University, China Collaborators: K. S. Cheng (HKU), Z. G. Dai (NJU), Y.
Gamma-Ray Burst Jets: dynamics and interaction with the progenitor star Davide Lazzati, Brian Morsony, and Mitch Begelman JILA - University of Colorado.
Gamma-Ray Burst Optical Observations with AST3 Xue-Feng Wu Xue-Feng Wu Chinese Center for Antarctic Astronomy, Chinese Center for Antarctic Astronomy,
Reverse Shocks and Prompt Emission Mark Bandstra Astro
Global Properties of X-ray Afterglows Observed with XRT ENWEI LIANG (梁恩维) University of Guangxi, Nanning astro.gxu.edu.cn Nanjing
Structure & Dynamics of GRB Jets Jonathan Granot Stanford “Challenges in Relativistic Jets” Cracow, Poland, June 27, 2006.
GRBs and Magnetic Fields Shiho Kobayashi (小林史歩) Liverpool John Moores University.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
 The GRB literature has been convolved with my brain 
Gamma-Ray Burst Early Afterglows Bing Zhang Physics Department University of Nevada, Las Vegas Dec. 11, 2005, Chicago, IL.
Collisionless shocks in Gamma Ray Bursts Current results and future perspectives. Århus, September 2005 Troels Haugbølle Dark Cosmology.
K. Alatalo - Extensions to the Standard Model1 Extensions to the Standard Afterglow Model Katey Alatalo October 10 th, 2005.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
Great Debate on GRB Composition: A Case for Poynting Flux Dominated GRB Jets Bing Zhang Department of Physics and Astronomy University of Nevada, Las Vegas.
Radiative transfer and photospheric emission in GRB jets Indrek Vurm (Columbia University) in collaboration with Andrei M. Beloborodov (Columbia University)
Gamma-Ray Burst Polarization Kenji TOMA (Kyoto U/NAOJ) Collaborators are: Bing Zhang (Nevada U), Taka Sakamoto (NASA), POET team Ryo Yamazaki, Kunihito.
Simulation of relativistic shocks and associated radiation from turbulent magnetic fields 2010 Fermi Symposium 9 – 12 May 2011 Rome Italy K.-I. Nishikawa.
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
Studies on the emission from the receding jet of GRB Xin Wang, Y. F. Huang, and S. W. Kong Department of Astronomy, Nanjing University, China A&A submitted.
A numerical study of the afterglow emission from GRB double-sided jets Collaborators Y. F. Huang, S. W. Kong Xin Wang Department of Astronomy, Nanjing.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Dark Gamma-Ray Bursts and their Host Galaxies Volnova Alina (IKI RAS), Pozanenko Alexei (IKI RAS)
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
GRB efficiency Revisited & Magnetar behind short GRB
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Physics of GRB Jets Jonathan Granot Stanford “GRBs: the first 3 hours”, Sanrotini, August 31, 2005.
1 Gamma-Ray Bursts: Central Engines, Early Afterglows, and X-Ray Flares Zigao Dai Nanjing University FAN4-HKU, 8-12 July 2013.
High Energy Emissions from Gamma-ray Bursts (GRBs)
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Gamma-Ray Burst Ring-shaped Jets And Their Afterglows Ming Xu Department of Astronomy, Nanjing University Gamma-ray Sky from Fermi: Neutron.
A Cosmology Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram Shuang-Nan Zhang Collaborators: Nan Liang, Wei-Ke Xiao,
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Poonam Chandra Jansky Fellow, NRAO, Charlottesville & University of Virginia.
The prompt phase of GRBs Dimitrios Giannios Lyman Spitzer, Jr. Fellow Princeton, Department of Astrophysical Sciences Raleigh, 3/7/2011.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
On late time rebrightenings in GRB optical afterglows
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Magnetized Shocks & Prompt GRB Emission
The signature of a wind reverse shock in GRB’s Afterglows
Les sursauts gamma : la phase des chocs internes.
Gamma-ray Bursts and Supernovae
Modelling of non-thermal radiation from pulsar wind nebulae
GRBs with GLAST Tsvi Piran Racah Inst. of Jerusalem, Israel
Synchro-Curvature Self Compton Radiation
Presentation transcript:

Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from Fermi: Neutron Stars and their Environment June 21-25, 2010, Hong Kong

★ The discovery of GRB afterglow ★ The standard fireball model ★ Some modifications to the standard model

Prompt emission Aftergow phase (Panaitescu 2008)

GRB GRB

(Panaitescu 2008)

After a coasting phase, the external shock will enter the self-similar deceleration phase, and the bulk Lorentz factor of the shock will decrease as power-law of time (Blandford & McKee 1976). The external shock will accelerate the electrons to the relativistic velocities and transfer some energy to the magnetic field. These shock accelerated electrons is power-law distributed. They move in the magnetic field and produce the power-law synchrotron radiation spectrums and light curves. Power-law electron Power-law spectrum Power-law dynamics Power-law light curve

(Sari, Piran & Narayan 1998) Spectrum Light Curve

(Huang et al. 1999, 2000)

(Huang et al. 2000, 2007)

Deduce the basic parameters of the GRB physics: E iso --- Isotropic energy in the jet θ Half opening angle of the jet n --- Environmental density ε e --- Electron energy fraction ε B --- Magnetic field energy fraction p --- Power-law index for the electron energy spectrum These parameters are useful in studying the central engines and environments of GRBs, and also useful in the research of shock physics.

KSW, Huang, Cheng, & Lu, 2009, Sci. China-Phys. Mech. Astron, 52, 2047

(Panaitescu & Kumar, 2001) (Yost et al., 2003)

(Kumar & Barniol Duran, 2009)

(Ghisellini et al., 2010)

The standard fireball model can explain the general features of GRB afterglows. BUT there are also some strange features beyond the expectation of the standard model. (1) Steep-shallow-normal decay phase in X-ray afterglow; (Panaitescu 2008)

The standard fireball model can explain the general features of GRB afterglows. BUT there are also some strange features beyond the expectation of the standard model. (1) Steep-shallow-normal decay phase in X-ray afterglow; (2) Various rebrightenings; GRB A GRB (Covino et al., 2008)(Perley et al., 2008)

The standard fireball model can explain the general features of GRB afterglows. BUT there are also some strange features beyond the expectation of the standard model. (1) Steep-shallow-normal decay phase in X-ray afterglow; (2) Various rebrightenings; (3) Achromatic and chromatic breaks; (Panaitescu 2008)

The standard fireball model can explain the general features of GRB afterglows. BUT there are also some strange features beyond the expectation of the standard model. (1) Steep-shallow-normal decay phase in X-ray afterglow; (2) Various rebrightenings; (3) Achromatic and chromatic breaks; ……

(1) Energy in the jet is constant (Standard model); (2) Sudden energy injection to the forward shock (Huang, Cheng & Gao 2006, Deng, Huang & KSW, 2010); (Deng, Huang & KSW, 2010)

(1) Energy in the jet is constant (Standard model); (2) Sudden energy injection to the forward shock (Huang, Cheng & Gao 2006, Deng, Huang & KSW, 2010); (3) Energy injection from a long-lasting central energy (Dai & Lu 1998, Zhang & Mészáros 2001, Zhang et al. 2006); (4) Energy injection due to the different velocities of the ejecta (Rees & Mészáros 1998, Granot & Kumar 2006, Sari & Mészáros, 2000); (5) Delayed energy transfer to the forward shock (Kobayashi & Zhang, 2007, Zhang 2007).

(1) Interstellar medium (Standard model); (2) Stellar wind (Dai & Lu 1998, Chevalier & Li 2000, Gou et al. 2001); (3) Density enhancement (Dai & Lu 2002, Lazzati et al. 2002, Dai & Wu 2003, Tam et al. 2005); (4) Termination shock (Ramirez-Ruiz et al. 2005; Pe’er & Wijers 2006, KSW, Wong, Huang, & Cheng, 2010). (KSW, Wong, Huang & Cheng, 2010)

(1) ε e, ε B and p are constant and electrons are power-law distributed (Standard model); (2) Evolution of ε e, ε B and p (Ioka et al 2006, Fan & Piran 2006, Granot et al. 2006, Panaitescu 2006); (3) Maxwellian component in the electron distribution (Spitkovsky 2008, Martins et al. 2008, Giannios & Spitkovsky, 2009). Result from a particle-in-cell (PIC) simulation (Spitkovsky 2008)

(1) Homogeneous conical jet (Standard model); (2) Jet with Gaussian angular profile (Zhang & Mészáros 2002, Kumar & Granot 2003); (3) Two component jet (Huang et al. 2004, 2006, Liu et al. 2008); (4) Cylindrical jet (Cheng et al. 2001, Huang & Cheng 2003, Tam et al. 2005); (5) Ring-shaped jet (Eichler & Levinson 2004, Levinson & Eichler 2004, Lazzati & Begelman 2005, Xu, Huang & KSW, 2007, Xu & Huang 2010, Xu Ming’s Talk); (6) Receding jet (Li & Song 2004, Wang, Huang & KSW 2009, Wang Xin’s talk); (7) Off-axis jet (Panaitescu & Mészáros 1999, Eichler & Granot 2006).

(1) Synchrotron (Standard model); (2) Synchrotron self-Compton (Sari & Esin 2001); (3) Inverse Compton of external radiation field (He et al. 2009, Toma et al. 2009, 2010). (4) Hadronic (Asano et al. 2009, Razzaque et al. 2009); (5) Synchro-curvature (Cheng & Zhang 1996); (6) Synchro-curvature self-Compton (Zhang Bo’s talk); (7) Dust scattering (Shao & Dai 2006, 2007).

The medium surrounding GRBs is broken into four regions, from inside to out (Castor et al. 1975; Weaver 1977): (1) the unshocked stellar wind; (2) the shocked stellar wind; (3) the shocked ISM; (4) the unshocked ISM. We only use Region (1) and Region (2) as the environment in our work, because the ejecta can not reach Region (3) during all the observable time (Pe’er & Wijers 2006). KSW, Wong, Huang, & Cheng, 2010, Mon Not Roy Astron Soc, 402, 409

The microphysics parameters may vary during the evolution of the fireball (Fan & Piran 2006). We can also imagine that the physical condition, such as the strength of the magnetic field, the temperature and density of the material, could be different between these two regions, so the evolution of microphysics parameters may not be the same accordingly. We use different parameters for these two regions to distinguish them and assume that in Region (1)in Region (2) & KSW, Wong, Huang, & Cheng, 2010, Mon Not Roy Astron Soc, 402, 409

The standard fireball model can explain the general features of GRB afterglows. At some times, we need to modify the standard model to explain some strange features in GRB afterglows. We can use the un-modified or the modified standard model to reproduce the observed afterglow light curves of GRBs. Through the modeling, we can deduce the fundamental parameters, and further constrain the GRB physics and the shock physics.