Lecture 5: IEEE 802. 11 Wireless LANs (Cont.). Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 802.11a.

Slides:



Advertisements
Similar presentations
Contents IEEE MAC layer operation Basic CSMA/CA operation
Advertisements

Wireless LAN (not assessed) Dr Sandra I. Woolley.
– Wireless PHY and MAC Stallings Types of Infrared FHSS (frequency hopping spread spectrum) DSSS (direct sequence.
© Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS591 – Wireless & Network Security.
Module C- Part 1 WLAN Performance Aspects
IEEE b Wireless LANs Carey Williamson Department of Computer Science University of Calgary.
14.1 Chapter 14 Wireless LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mobile Communications: Wireless LANs Mobile Communications Chapter 7: Wireless LANs  Characteristics  IEEE  PHY  MAC  Roaming  HIPERLAN.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 15 Wireless LANs.
P. Bhagwat Specification overview. P. Bhagwat Specifications PLCP Sublayer PHY layer Management PMD Sublayer MAC sublayer MAC Layer Management.
1 CSE401n:Computer Networks Lecture 16 Wireless Link & LANs WS: ch-14 KR: 5.7.
Wireless Networking So we talked about wired networks. What about wireless?
Introduction to Wireless LANs: Supports both Asynchronous data transfer and time bound services Asynchronous: traffic insensitive to time.
110/15/2003CS211 IEEE Standard Why we study this standard: overall architecture physical layer spec. –direct sequence –frequency hopping MAC layer.
5-1 Data Link Layer r Wireless Networks m Wi-Fi (Wireless LAN) Example Problems m RTS/CTS.
IT351: Mobile & Wireless Computing
Network Security Wireless LAN. Network Security About WLAN  IEEE standard  Use wireless transmission medium such as radio, microwave, infrared.
CS640: Introduction to Computer Networks Aditya Akella Lecture 22 - Wireless Networking.
Lecture #2 Chapter 14 Wireless LANs.
Wireless LAN Advantages 1. Flexibility 2. Planning 3. Design
Lecture 2 – IEEE
Opersating Mode DCF: distributed coordination function
MAC layer Taekyoung Kwon. Media access in wireless - start with IEEE In wired link, –Carrier Sense Multiple Access with Collision Detection –send.
IEEE Project started by IEEE for setting standard for LAN. This project started in (1980, February), Name given to project is year and month.
Architecture of an infrastructure network
Ethernet. Problem In an Ethernet, suppose there are three stations very close to each other, A, B and C. Suppose at time 0, all of them have a frame to.
Lecture 4 Wireless Medium Access Control
IEEE Wireless LAN Standard. Medium Access Control-CSMA/CA IEEE defines two MAC sublayers Distributed coordination function (DCF) Point coordination.
1 Module B WLAN – Engineering Aspects Prof. JP Hubaux Mobile Networks
Introduction to Wireless LAN  Background  Media access principle  Architecture  MAC control  MAC management  PHY layer.
CSC 581 Communication Networks II Chapter 6c: Local Area Network (Wireless LAN – ) Dr. Cheer-Sun Yang.
Fundamentals of Computer Networks ECE 478/578
Chapter 6 Medium Access Control Protocols and Local Area Networks Wireless LAN.
An Introduction to Wireless LANs
Wi-Fi. Basic structure: – Stations plus an access point – Stations talk to the access point, then to outside – Access point talks to stations – Stations.
Universität Karlsruhe Institut für Telematik ECE 591
WLAN. Networks: Wireless LANs2 Distribute Coordination Function (DCF) Distributed access protocol Contention-Based Uses CSMA/ CA – Uses both physical.
Lecture 27 University of Nevada – Reno Computer Science & Engineering Department Fall 2015 CPE 400 / 600 Computer Communication Networks Prof. Shamik Sengupta.
Chapter 14 Wireless LANs.
MAC Sublayer MAC layer tasks: – Control medium access – Roaming, authentication, power conservation Traffic services – DCF (Distributed Coordination.
Wireless Protocols. 2 Outline MACA 3 ISM: Industry, Science, Medicine unlicensed frequency spectrum: 900Mhz, 2.4Ghz, 5.1Ghz, 5.7Ghz.
802.11: Introduction Reference: “IEEE : moving closer to practical wireless LANs”; Stallings, W.; IT Professional, Volume: 3 Issue: 3, May- June.
MAC Layer Protocols for Wireless Networks. What is MAC? MAC stands for Media Access Control. A MAC layer protocol is the protocol that controls access.
MAC for WLAN Doug Young Suh Last update : Aug 1, 2009 WLAN DCF PCF.
ECEN 489, Prof. Xi Zhang Medium Access Control Protocols, Local Area Networks, and Wireless Local Area Networks Lecture Note 11.
DSSS PHY packet format Synchronization SFD (Start Frame Delimiter)
Copyright © 2003 OPNET Technologies, Inc. Confidential, not for distribution to third parties. Wireless LANs Session
Wireless Local Area Networks (WLAN) Part-1: IEEE IT351: Mobile & Wireless Computing Objectives: – To provide a detailed study of the WLAN architecture.
IEEE Wireless LAN. Wireless LANs: Characteristics Types –Infrastructure based –Ad-hoc Advantages –Flexible deployment –Minimal wiring difficulties.
CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Wireless MAC; MAC; New Designs Yang (Richard) Yang Computer Science.
IEEE Wireless Local Area Network (WLAN)
EA C451 (Internetworking Technologies)
Lecture 27 WLAN Part II Dr. Ghalib A. Shah
Mobile and Ad hoc Networks
IEEE : Wireless LANs ALOHA, Slotted ALOHA
IEEE Wireless LAN wireless LANs: untethered (often mobile) networking
CSE 4215/5431: Mobile Communications Winter 2011
Media Access Control and
Specification overview
Chapter 6 Medium Access Control Protocols and Local Area Networks
CSE 4215/5431: Mobile Communications Winter 2010
Specification overview
Protocol Details John Bellardo UCSD.
Specification overview
Specification overview
Wireless LAN Simulation IEEE MAC Protocol
Specification overview
Specification overview
Specification overview
Presentation transcript:

Lecture 5: IEEE Wireless LANs (Cont.)

Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN a b i/e/…/n/…/z/aa g WiFi h Personal wireless nw WPAN Bluetooth a/b/c/d/e/f/g ZigBee Wireless distribution networks WMAN (Broadband Wireless Access) [ (Mobile Broadband Wireless Access)] e (addition to.16 for mobile devices) + Mobility WiMAX b/c ,.6 (WBAN)

Layers and functions MAC – access mechanisms, fragmentation, encryption MAC Management – synchronization, roaming, MIB, power management PLCP Physical Layer Convergence Protocol – clear channel assessment signal (carrier sense) PMD Physical Medium Dependent – modulation, coding PHY Management – channel selection, MIB Station Management – coordination of all management functions PMD PLCP MAC LLC MAC Management PHY Management PHY DLC Station Management

MAC layer I - DFWMAC Traffic services – Asynchronous Data Service (mandatory) exchange of data packets based on “best-effort” support of broadcast and multicast – Time-Bounded Service (optional) implemented using PCF (Point Coordination Function) Access methods – DFWMAC-DCF CSMA/CA (mandatory) collision avoidance via randomized “back-off“ mechanism minimum distance between consecutive packets ACK packet for acknowledgements (not for broadcasts) – DFWMAC-DCF w/ RTS/CTS (optional) Distributed Foundation Wireless MAC avoids hidden terminal problem – DFWMAC- PCF (optional) access point polls terminals according to a list

MAC layer II Priorities – defined through different inter frame spaces – no guaranteed, hard priorities – SIFS (Short Inter Frame Spacing) highest priority, for ACK, CTS, polling response – PIFS (PCF IFS) medium priority, for time-bounded service using PCF – DIFS (DCF, Distributed Coordination Function IFS) lowest priority, for asynchronous data service t medium busy SIFS PIFS DIFS next framecontention direct access if medium is free  DIFS

b802.11a802.11g aSIFSTime10 usec16 usec10 usec aSlotTime20 usec9 usec20 usec (mixed); 9 usec (g only) aDIFTime (2xSlot+SIFS) 50 usec34 usec50 usec; 28 usec – Inter Frame Spacing

CSMA/CA access method I station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness) t medium busy DIFS next frame contention window (randomized back-off mechanism) slot time (20µs) direct access if medium is free  DIFS

competing stations - simple version t busy bo e station 1 station 2 station 3 station 4 station 5 packet arrival at MAC DIFS bo e busy elapsed backoff time bo r residual backoff time busy medium not idle (frame, ack etc.) bo r DIFS bo e bo r DIFS busy DIFS bo e busy bo e bo r

CSMA/CA access method II Sending unicast packets – station has to wait for DIFS before sending data – receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC) – automatic retransmission of data packets in case of transmission errors t SIFS DIFS data ACK waiting time other stations receiver sender data DIFS contention

DFWMAC Sending unicast packets – station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium) – acknowledgement via CTS after SIFS by receiver (if ready to receive) – sender can now send data at once, acknowledgement via ACK – other stations store medium reservations distributed via RTS and CTS t SIFS DIFS data ACK defer access other stations receiver sender data DIFS contention RTS CTS SIFS NAV (RTS) NAV (CTS)

Fragmentation t SIFS DIFS data ACK 1 other stations receiver sender frag 1 DIFS contention RTS CTS SIFS NAV (RTS) NAV (CTS) NAV (frag 1 ) NAV (ACK 1 ) SIFS ACK 2 frag 2 SIFS

DFWMAC-PCF I (almost never used) PIFS stations‘ NAV wireless stations point coordinator D1D1 U1U1 SIFS NAV SIFS D2D2 U2U2 SuperFrame t0t0 medium busy t1t1

DFWMAC-PCF II t stations‘ NAV wireless stations point coordinator D3D3 NAV PIFS D4D4 U4U4 SIFS CF end contention period contention free period t2t2 t3t3 t4t4

Frame format Types – control frames, management frames, data frames Sequence numbers – important against duplicated frames due to lost ACKs Addresses – receiver, transmitter (physical), BSS identifier, sender (logical) Miscellaneous – sending time, checksum, frame control, data Frame Control Duration/ ID Address 1 Address 2 Address 3 Sequence Control Address 4 DataCRC bytes Protocol version TypeSubtype To DS More Frag Retry Power Mgmt More Data WEP 2241 From DS 1 Order bits111111

MAC address format DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

Special Frames: ACK, RTS, CTS Acknowledgement Request To Send Clear To Send Frame Control Duration Receiver Address Transmitter Address CRC bytes Frame Control Duration Receiver Address CRC bytes Frame Control Duration Receiver Address CRC bytes ACK RTS CTS

Example: b Throughout Suppose TCP with 1460 bytes payload – b data frame size (not including preamble): 1536 bytes – TCP ACK data frame size (not including preamble): 76 bytes b ACK frame size 14 bytes Suppose b at the highest rate – 8 bits per symbol – Msps Q: What is TCP/802.11b throughput?

Example: b Throughout Each transaction requires 2,084 μs. At that duration, 479 exchanges can complete per second. With a TCP payload of 1,460 bytes per exchange, the throughput is 5.7 Mbps.