Biotech & Pharma The Science, The Jobs, & Skills for Success Neil Stahl Ph.D. Regeneron Pharmaceuticals.

Slides:



Advertisements
Similar presentations
The Drug Discovery Process
Advertisements

David M. Pollock Medical College of Georgia Discovery-Academia.
Regulatory Framework Leigh Shaw, Director.
Challenges in new drug discovery in South Asia
The Statisticians Role in Pharmaceutical Development
Integrative Organs Systems Scientists and Drug Discovery: The Link Between Big Pharma and Academia Glenn A. Reinhart, Ph.D. Senior Group Leader Integrative.
PHCL 472 Nouf Aloudah 1.  Mark Pillar story 2  Change Is Necessary  Pharmacy managers and pharmacists are grappling with the many forces affecting.
Galapagos: a new force in drug discovery Onno van de Stolpe – CEO IEX Beleggen in Biotech Dag May 20, 2006.
Research Methods, Overview 1 There are hundreds of Scientific fields and disciplines, ranging from the Physical Sciences, to the Life Sciences, to the.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH Working with FDA: Biological Products and Clinical Development Critical Path.
Nanotechnology in Drug Discovery- Development and Delivery
Biotech & Pharma Biomedical career opportunities in industry
Introduction to Immunoassays
The Application of the Scientific Method: Preclinical Trials Copyright PEER.tamu.edu.
What Do Toxicologists Do?
Introduction of Cancer Molecular Epidemiology Zuo-Feng Zhang, MD, PhD University of California Los Angeles.
Pharmaceutical Development and Review Process Rev. 10/21/2014 APGO Interaction with Industry: A Medical Student Guide.
+ Drug Development and Review Process. + Objectives Learn the processes involved in drug discovery and development Define the phases involved in FDA drug.
Drug Discovery Process
Career Opportunities for PharmDs in the Pharmaceutical Industry: Research & Development.
Use of Monoclonal Antibodies Against Autoimmune Diseases By: Kelly Sambuchi ISAT 351 Spring 1999.
DNA TECHNOLOGY DNA recombination or genetic engineering is the direct manipulation of genes for practical purposes.
Biomedical research methods. What are biomedical research methods? An integrated approach using chemical, mathematical and computer simulations, in vitro.
Food and Drug Administration Preclinical safety data for “first in human” (FIH) clinical trials in healthy volunteer subjects Oncology Drug Advisory Committee.
1 SAFETY IMPLICATIONS FOR BIOTECH PRODUCTS Peter Feldschreiber & Leigh-Ann Mulcahy Four New Square.
Haffner Associates, LLC1 Orphan Drugs – 2011 What’s Happening? Women in BIO Marlene E. Haffner, MD, MPH Office 301.
Biosafety and recombinant DNA technology. Involves.... Experiments involving the construction or use of GMOs should be conducted after performing a biosafety.
Joint Business Plan Madhurjya K. Dutta 1mk_dutta Sept 2010.
Stages of drug development
Masterclass 7 — Career Progression Copyright © Healthcare Quality Quest, 2013.
Acquisitions, a Publisher’s Perspective Craig Duncan Development Manager External Development Studio Building the partnership between.
Figure 4.1 NEW PRODUCT DEVELOPMENT PROCESS Finance Corporate strategy and portfolio decisions Regulatory affairs Marketing and sales + market research.
A substance used in the diagnosis, treatment, or prevention of a disease or as a component of a medication A substance used in the diagnosis, treatment,
Biotechnology in Medicine Chapter 12.
Marine Drug Development and Delivery Prof. Dr. Basavaraj K. Nanjwade M. Pharm., Ph. D Department of Pharmaceutics KLE University College of Pharmacy BELGAUM ,
CS 790 – Bioinformatics Introduction and overview.
TOPICS IN (NANO) BIOTECHNOLOGY
Exploratory IND Studies
Nonclinical Perspective on Initiating Phase 1 Studies for Small Molecular Weight Compounds John K. Leighton, PH.D., DABT Supervisory Pharmacologist Division.
Investigational Drugs in the hospital. + What is Investigational Drug? Investigational or experimental drugs are new drugs that have not yet been approved.
FINDING THE DISEASE GENES PROGRESS AND PROBLEMS THE HUMAN GENOME MAPPING PROJECT SEEKS TO READ THE FULL SEQUENCE OF THE HUMAN GENOME 3 Billion bases.
Developing medicines for the future and why it is challenging Angela Milne.
CHALLENGES FACED IN THE DEVELOPMENT OF BIOSIMILARS Dr.G.Hima Bindu MD; PG dip. diabetology Asst.Professor Dept. of Pharmacology Rajiv Gandhi Institute.
Welcome and Introduction Lee S. Simon, MD Division Director Analgesic, Anti-inflammatory and Ophthalmologic Drug Products ODEV/CDER.
Everyone Communicates Few Connect
The FDA: Basic Facts It takes 12 to 15 years to develop a single drug Only 1 in 10,000 potential medications makes it completely through the process Only.
“Journey of a Drug” From Test Tube TO Prescribing Physician.
MRC Technology an independent life science medical research charity Biotech & Money 2016 Mr Andrew Mercieca, Director of Finance
European Patients’ Academy on Therapeutic Innovation The key principles of pharmacology.
15 March 2016 Today’s Title: CW: Introduction to genetic engineering Learning Question: what is genetic engineering?
Progression of New Drug: From Idea to Public Consumption Chris DeFarlo Writing in the HLTH Professions Unit 2 Prof. Edwards.
The opportunities and challenges of sharing genomics data with the pharmaceutical industry Shahid Hanif, Head of Health Data & Outcomes, ABPI DNA digest.
. Lilly Diabetes Company Confidential Copyright© 2008 Eli Lilly and Company Company Confidential Copyright© 2008 Eli Lilly and Company Career Opportunities.
A substance used in the diagnosis, treatment, or prevention of a disease or as a component of a medication recognized or defined by the U.S. Food, Drug,
Interviewing for the Pharmaceutical Industry: what does it involve and how to succeed? David P Brooks.
1 Promotion in Management and Research Tracks in Industry Magdalena Alonso-Galicia, PhD Cardiovascular Diseases Department Merck Research Laboratories.
Drug discovery involves systematically identifying which protein is causing a problem in the body - either because it is absent, defective, or excessive.
I am in the Biotechnology industry
Drug Discovery &Development
MRC’s Translational Research Funding
Genetic Engineering and Animal Research
APPLICATIONS OF BIOINFORMATICS IN DRUG DISCOVERY
The Lifecycle of Pharmaceutical products
Introduction to the Biotechnology Workplace
Introduction to the Biotechnology Workplace
Single chain antibody library Why single domain antibodies are preferred? Single domain antibodies represent the smallest antibody that was proven of diagnostic.
From Bench to Clinical Applications: Money Talks
5 Pharmacodynamics.
Drug Design and Drug Discovery
Pharmaceuticals Industry
Presentation transcript:

Biotech & Pharma The Science, The Jobs, & Skills for Success Neil Stahl Ph.D. Regeneron Pharmaceuticals

Overview Science at a Company vs. Academia Attributes for Success at a Company Biotech vs. Big Pharma Biotech : Innovation and Risk Drug Development 101 Job Opportunities Outside of “Research” Getting Hired

My Experience BS Zoology Duke 1978  Duke Marine Lab 1977, 78, 79 brought me to Science PhD Biochemistry Brandeis  Quantitative fundamentals of equilibria, kinetics, & how to make a conclusion Post-Doc at UCSF with Stan Prusiner - Scrapie Prions  Learned many fields ranging from protein chemistry, cell biology, transgenics, human genetics Regeneron Discovery, 1991 (65 employees)  Explored mechanisms of how cytokine receptors are activated and activate cytoplasmic signaling pathways  Figured out a way to make tight binding cytokine blockers based on the mechanism of cytokine activation, using multiple cytokine receptor components in a recombinant fusion protein = “Cytokine Trap” Regeneron Drug Development ( ; now 565 employees)  Established preclinical development group - put 3 Traps into clinical trials  Joined Senior Management - reorganized program management, clinical project teams, jointly manage all aspects of Research and Clinical Development, present to investors, analysts, potential partners

Science at a Company Scientific endeavor on a project can be carried out at a scale that is very rare in a University setting Teams of competent people aligned toward a common goal can accomplish more than any individual scientist Discoveries can be translated into therapeutic opportunities with the potential to create new drugs and technologies  Understand molecular and cellular pathways defining a particular biology and how it goes wrong in disease  Create a drug to impact those pathways  Explore how that drug works in animals and humans  Design Clinical Program to prove that the drug is safe & effective  Register the drug with the FDA and Rest of World

Differences Between Academia & Industry You will have access to far more resources, equipment, core facilities, and collaborative colleagues to advance your project You will be required to work on projects of the company’s choosing You may be asked to switch to (or add on) new projects Although you will report to one person, you will interact with many Scientists instead of a single PI Participate and present in cross-functional meetings where data is vetted and the future directions of a project are established by discussion and consensus  More heads are better than 1! You are likely to publish and attend scientific conferences

Some Myths of Industry You have failed if you don’t pursue an academic position  That’s what some told me, but there are many, many incredibly competent people doing Science & Drug Discovery in Industry The working day is 9-5  Hard, effective work is expected and rewarded! Compensation is dramatically better than academia  Entry level scientist positions (3-5 year postdoc) are compensated similarly to Assistant Professors, but much better than post-docs, and there are stock options!  However, opportunity for advancement is more frequent and more rapid than Academia You never get to publish  I published more rapidly at Regeneron than anywhere else! Also, compensation is based on contributions beyond publishing You can’t move from Industry to Academia  More and more, Universities value Industry experience and perspective, making a reverse move more likely

Attributes for Success at a Company Team player who can collaborate effectively with others Ability to become interested in a wide variety of different scientific areas - learning is a continuous Life-long experience! Superb analytical, communication, and presentation skills All of us have particular skills that make us good Scientists, although my exact skill set may not be the same as yours Contribute your particular talent and expertise toward the common goal Success means that your project grows so that hundreds of people work on it!

Biotech vs Big Pharma Often more innovative, high-risk scientific approaches Typically more traditional small molecule Drug Discovery, unless partnered with Biotech More informal working environment, with a “we’re all in this together” spirit. A “do what it takes to get the job done” attitude that may provide more variety More likely to participate in decision-making process Typically more hierarchical Employees can become pigeon-holed in a particular function. Larger organizations usually have more rules! Much larger experience base More resources than Academia, but often partners with Pharma for expensive late stage clinical programs Can bring huge resources to bear on a project, although there is always internal competition for resources Can be acquired, have layoffs, or slowly go out of business Can be acquired, or have periodic layoffs More opportunities for advancement than Academia or Pharma if company grows Stock options can provide financial windfall if company successful Base compensation often higher than Biotech, but usually doesn’t have as large a stock option upside Promotion may occur more slowly

Biotech : Innovation & Risk Biotech companies have traditionally been founded to exploit cutting edge ideas and technology. Examples include:  Using our own cytokines, growth factors, and enzymes as drugs  Engineering human fusion proteins, combining functionalities to achieve new properties  Creating Humanized and Human Monoclonals as drugs  Transcriptional control  siRNA  Ribozymes  Aptamers  Gene Therapy Many Biotech ventures are unsuccessful, often because there is not a realistic business plan of how to create an income-generating product before their ability to raise money runs out You need to assess whether the company’s scientific and business plan makes sense, their history and future potential of raising capital, partnering deals they have closed, and how soon they will generate revenue

The Promise of the Human Genome Sequence The Hype:  Drug Development will be revolutionized following the identification of novel genes in “druggable” classes The Fact:  Identifying novel genes is the first baby step.  Understanding their biology and creating therapeutics against them is the difficult step that, in many instances, can take decades  Accelerating these steps is the key to creating novel therapeutic opportunities

Target Validation : Velocigene Allows Rapid Creation of Mutant Mice, and Detailed Visualization of Expression 1 Nature Biotechnology paper described 10% of KO’s ever made!

Huge Opportunities in Protein-Based Therapeutics Good Drug Targets are hard to come by  Many companies make “Me Too” drugs against targets for which drugs already exist Many Interesting Targets are large proteins (eg Cytokines and Growth Factors) that drive broad biological responses These pathways cause disease if inappropriately stimulated  These targets are usually not amenable to small molecule approaches  Current successful approaches include monoclonal antibodies that block cytokine action, and receptor - Fc fusion proteins As we learn more about Biology, we will uncover an ever growing number of Targets that will require protein-based interventional approaches

Protein Therapeutics - Examples Success Stories Insulin - First administered to humans in 1922 Interferons Erythropoietin Growth Hormone Enbrel - a receptor-Fc fusion protein Antibodies - eg Herceptin, Rituxan, Remicade, Humira, Avastin Less Successful Stories Mouse immunoglobulins - antigenicity Thrombopoietin (Tpo)- efficacy, immunogenicity Lenercept - Receptor-Fc fusion - immunogenicity Leptin - misunderstood mechanism - efficacy

Protein Therapeutics Strengths & Weaknesses Strengths high specificity compared to small molecules Little off-target toxicity - less likely to fail in early trials Block Targets not amenable to small molecules - eg growth factors & receptors Weaknesses More difficult to manufacture Potential immunogenicity even from fully human proteins  Low abundance proteins that don’t circulate  Protein variants (aggregates, oxidation, deamidation) that break tolerance More difficult to evaluate toxicology injectable

Regeneron Technology: Heteromeric Soluble Receptors Form Tight-Binding “Traps” RR RR Cytokine Kd = 5 nMKd = 10 pM RR RR Fc Light Chain Heavy Chain Fc (Drives Dimerization) Antibody Structure

In-Line Heteromeric Traps Must Overexpress 2 cDNAs Must Purify Heterodimer away from Homodimers Waste Cell’s Production Capacity with Unwanted Homodimers In-Line fusion of 2 receptors without intervening linkers creates simple homodimer with very high affinity

Making a Proof of Concept into a Drug Make T-shirts Do Preclinical Work File Investigational New Drug Application with FDA Clinical Trials File Biologics License Application

PreClinical Development Checklist BioMolecular Engineering Cell line Development - FASTR Process Development Formulation Assay Development Pharmacology Pharmacokinetics Toxicology Regulatory - IND = Investigational New Drug Application

BioMolecular Engineering Create Trap candidates with different receptor order (eg:  -Fc,  -Fc,  -Fc- ,  -Fc-  ), different fusion position in receptor sequence + linkers to increase flexibility Evaluate for bioactivity, high expression level from CHO cells, clean folding  -Fc with no extraneous linkers

Something Old, Something New Ways to Isolate Over-Expressing Cell Lines How to isolate clones after transfection: FACS GOI ELISA FASTR : Isolation based on expression / characteristic of secreted protein

FASTR Cell Line Selection F low cytometry-based A utologous S ecretion Tr ap CHO Parental cell with doxycyline- inducible expression of FcR Binds Trap internally and displays on cell surface Whole population of transfected cells can be sorted by FACS with fluorescent anti-Fc Allows selection of highest expresser from amongst millions of transfected cells Turn off expression of FcR after selection to allow unhindered secretion for manufacturing

Process Development Goal is to have protein secreted from CHO (Chinese Hamster Ovary cells) which have low viral burden and make human carbohydrate structures Batch-Fed Bioreactor Process - yield is 1-3 g/L after days of culture Start at 2L scale, eventually to 10,000 L, which yields 10 kg at expression of 1 g/L 3 step purification process (Protein A, ion exchange, hydrophobic interaction chromatography) with up to 70% yield

Formulation Desire high concentration with adequate stability to give > 2 year shelf- life Add GRAS (Generally Regarded as Safe) excipients to stabilize protein from aggregation, deamidation, oxidation, fragmentation  Polysorbate, sucrose, amino acids, PEG IV formulations generally <10 mg/ml Subcutaneous (SC) mg/ml IL1 Trap: liquid at 50 mg/ml or lyophilized at 80 mg/ml

Assay Development/Pharmacokinetics Immunoassays to measure Trap and their complexes with target cytokines in plasma Assays to detect formation of antibodies against the Trap Use to measure PK - how the blood levels change over time, which often guides dosing frequency and active dose levels IV & SC pharmacokinetics in Monkeys

Pharmacology: Murine Model of Collagen-Induced Arthritis CIA model in dba-1 mice is the most widely accepted model of rheumatoid arthritis Injection of bovine collagen II induces immune response that results in progressive autoimmune joint destruction Injection of zymosan IP at day 30 gives more robust and synchronous arthritis response Arthritis severity index grades inflammation, swelling, and deformity IL1 Trap blocks cartilage erosion, as well as joint swelling and deformity Trap 10 mg/kg Trap 31 mg/kg Vehicle Arthritis Severity Index Trap Vehicle

Toxicology Usually, new drugs are tested at high doses in 2 animal species to identify NOAEL (No Adverse Event Level) and MTD (Maximum Tolerated Dose) Test drugs at >10x higher doses than expected human dose Many protein therapeutics have strict species specificity, and can only be tested in primates, but often KO data in animals is predictive of safety issues IL1RI KO shows no adverse phenotype except increased susceptibility to some types of bacterial infections Moreover, human proteins are often immunogenic in animals  Immunogenicity in animals not predictive of Ab response in humans IL1 Trap only binds primate IL1 6 week toxicology study in monkeys showed no evidence of toxicity, but an antibody response was observed after a few weeks that resulted in clearance of Trap from circulation No MTD observed, adequate safety to proceed to clinical trials!

Regulatory FDA regulates testing of experimental drugs in people Must submit IND - Investigational New Drug Application Usually takes us ~1 year to complete, and may involve ~100 people Describes everything you know about the manufacturing and structure, PK, pharmacology, formulation, stability, toxicology, proposed clinical plan for Phase I trials FDA gets 30 days to respond, allowing you to go forward, or request more information, or to tweak your clinical trial design…

Clinical Trial Overview Phase I Safety Dose Escalation in Volunteers or Patients Phase II Dose Ranging Efficacy Studies to decide on dose and interval Phase III Proof of Efficacy Treat larger number and broader range of patients to evaluate overall safety and look for less frequent adverse events (AEs)  As few as 4 clinical studies (each one a single “experiment”) could suffice to get a drug approved for use in humans!!

Entry Level Positions in Biotech Research Post-Doctoral Scientist Analogous to Academia, except more resources and mentoring available As in academic post-doc, a good publication record should allow return to Assistant Professor route Pharmaceutical Post-Doctoral Scientist Contribute to Clinical Development Projects or Core Technologies in ways that may not result in high profile publications Would lead to a career in Biotech/Pharma Scientist 2-5 years post-doctoral experience Staff Scientist 3 years experience following Post-Doc

Career Opportunities Outside of “Research” Preclinical Development  Immunoassays & Sample Analysis from Human Clinical Trials  Formulation Development  Pharmacology - Assessing Drugs in Animal Models Protein Sciences  Cell line generation to overexpress recombinant proteins  Protein characterization  New technology and assay development  Protein Manufacturing Process Development Program Coordination & Management Core Facilities  Methodology Oriented (DNA, in situ, FACS, Mass Spec, Biacore) Clinical Regulatory - understand FDA Guidance, liason for company to FDA, EU Scientific Writing Quality Control Business Development

Getting Hired

Application & Hiring Process Typically, job descriptions are posted, applications solicited Human Resource personnel (non-scientists) review applications, winnowing down to those that match job description, and pass on to Hiring Scientists Unsolicited applications to HR and Hiring Scientists can sometimes hit paydirt and find an opening before it’s even listed

CV & Cover Letter Essentials Must communicate to multiple audiences  Scientists - trying to figure out if you have the raw materials that they can mold into a productive scientist and useful contributor  Human Resources - non-scientists checking for a match between your CV and a job description Usually your First & Only Chance to make a positive impression Should convey your  Intelligence & ability to communicate (Clear Writing = Clear Mind!)  Perspective of your field beyond your own project  Accomplishments - aimed at a non-expert and placed in context of the open questions in your field  Skill set - techniques that you really know as well as those for which you may have a passing knowledge and vocabulary  Enthusiasm!

CV Same CV can be used for all applications Need not be 1 page - can be 3-4 or longer Research summary  explain in 1 paragraph your projects and conclusions  aimed at someone who is not in your field  Can also briefly describe rotation & graduate research Clearly identify core skill sets  Don’t exaggerate - you’ll get busted  just because you have seen a mass spectrometer doesn’t mean you should list it as a core competency!!! Presentations Awards/Grants Initiatives that you’ve undertaken outside your core requirements Publications - including submitted / in preparation Supervisory & Collaborative experiences

Summary & Technical Skills

Cover Letter Ideally should be customized for each application Should connect your skill set and experience to the job you are applying for so that it’s easy for HR to understand and pass on to hiring scientist Should describe your project and findings in the broad context of your field - often the best way to convey to the Hiring Scientist that you were not just a skilled set of hands directed by your PI Rarely is an applicant “perfect” for the job - often we look for someone that appears to be smart, communicates well, and can grow into a job Therefore, it’s usually a stretch to say that you can “make Regeneron a success…” More reasonable to emphasize your flexibility and ability to learn quickly…

Current Trends Protein Therapeutics  Large number in clinical trials  Currently constitute a large percentage of approved Drugs  Big Pharma licensing protein therapeutic candidates from biotech  Example: Aventis committed ~$800 Million for 50% share of Regeneron’s VEGF Trap, which was largest deal ever for Phase I drug… Biomarkers  Accelerate clinical trial process  May provide earlier evidence of biological activity than clinical readouts  Also potential to predict responders in a complex disease state Personalized Medicine  predicting who will respond best to each drug

“Personalized Medicine” Many drugs work in some individuals but not others with the “same” disease Unresponsive patients get the risk of side-effects without the benefit of efficacy What if responsive patients could be identified based on their genetic makeup or a simple blood test for a protein or mRNA fingerprint Second best, what if responders could be identified after a single dose of a drug based on a surrogate marker that was a reliable predictor of eventual clinical response

Markers of IL-1 Driven Disease Discover an IL-1 gene expression “fingerprint” in patients with genetically driven IL-1 disease  Microarray analysis of patients during flare and in remission while on drug vs. normal volunteers Examine more diverse disease population (eg rheumatoid arthritis) for patients that display the “IL-1 fingerprint”, and evaluate whether they are more responsive to the IL-1 Trap

CIAS1 Gene Encodes “Cryopyrin” (NALP-3) central to regulation of Inflammatory processes Mutant NALP-3 activates Caspase Overproduction of IL-1 (Dinarello, 2004)

IL1 Driven Genetic AutoInflammatory Syndromes Autoinflammatory Syndromes -FCAS, MW, NOMID Genetic Diseases with mutations in cryopyrin (NALP3) resulting in upregulation of IL1 Symptoms range from daily fevers & rash, uveitis, arthralgia, deafness, neurological syndromes