Batura A.S., Orynyak I.V. IPS NASU Pisarenko’ Institute for Problems of Strength, Kyiv, Ukraine National Academy of Sciences of Ukraine Pisarenko’ Institute.

Slides:



Advertisements
Similar presentations
Mechanics of Materials II
Advertisements

3 – Fracture of Materials
Fracture Mechanics Overview & Basics
Lecture 25 Bodies With Holes / Stress Perturbations Around Cracks Geol 542 Textbook reading: p ;
Lecture 9 - Flexure June 20, 2003 CVEN 444.
STATICALLY DETERMINATE STRESS SYSTEMS
Fracture Specimen To Visualize whether a crack of given length in a material of known fracture toughness is dangerous, because it will propagate to given.
Sensitivity Analysis In deterministic analysis, single fixed values (typically, mean values) of representative samples or strength parameters or slope.
1 ASTM : American Society of Testing and Materials.
Presented by Robert Hurlston UNTF Conference 2011 Characterisation of the Effect of Residual Stress on Brittle Fracture in Pressure Vessel Steel.
1 CONSTRAINT CORRECTED FRACTURE MECHANICS IN STRUCTURAL INTEGRITY ASSESSMENT Application to a failure of a steel bridge Anssi Laukkanen, Kim Wallin Safir.
The asymptotic study of fatigue crack growth based on continuum damage mechanics Zhao J., Zhang X. The asymptotic study of fatigue crack growth based on.
J.Cugnoni, LMAF-EPFL,  Stress based criteria (like Von Mises) usually define the onset of “damage” initiation in the material  Once critical stress.
Copyright 2001, J.E. Akin. All rights reserved. CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis.
Unit 3: Solid mechanics An Introduction to Mechanical Engineering: Part Two Solid mechanics Learning summary By the end of this chapter you should have.
Theoretical & Industrial Design of Aerofoils P M V Subbarao Professor Mechanical Engineering Department An Objective Invention ……
Chapter Outline Shigley’s Mechanical Engineering Design.
Fracture of Divertor Structures Jake Blanchard ARIES Meeting April 2011.
Structural Design. Introduction It is necessary to evaluate the structural reliability of a proposed design to ensure that the product will perform adequately.
Bearing Capacity Theory
Minimum Weight Wing Design for a Utility Type Aircraft MIDDLE EAST TECHNICAL UNIVERSITY AE 462 – Aerospace Structures Design DESIGN TEAM : Osman Erdem.
Distributed Forces: Moments of Inertia
Introduction to virtual engineering László Horváth Budapest Tech John von Neumann Faculty of Informatics Institute of Intelligent Engineering.
Applications of Calculus. The logarithmic spiral of the Nautilus shell is a classical image used to depict the growth and change related to calculus.
Effect of finite size of component The SIF derived earlier is for cracks in an infinite body. However the finite size, geometry of the component, loading.
Orynyak I.V., Radchenko S.A. IPS NASU Pisarenko’ Institute for Problems of Strength, Kyiv, Ukraine National Academy of Sciences of Ukraine Pisarenko’ Institute.
Engineering Doctorate – Nuclear Materials Development of Advanced Defect Assessment Methods Involving Weld Residual Stresses If using an image in the.
CRISM “Prometey”, Saint-Petersburg, Russia 1 ПОСТРОЕНИЕ РАСЧЕТНОЙ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ВЯЗКОСТИ РАЗРУШЕНИЯ КОРПУСНЫХ РЕАКТОРНЫХ МАТЕРИАЛОВ: ОБЩИЕ.
Professor V.I. Makhnenko, scientist A.S. Milenin E.O. Paton Electric Welding Institute of National Academy of Sciences of Ukraine 1 Remaining Time Assessment.
Orynyak I.V., Borodii M.V., Batura A.S. IPS NASU Pisarenko’ Institute for Problems of Strength, Kyiv, Ukraine National Academy of Sciences of Ukraine Pisarenko’
API 6HP Process1 API 6HP Example Analysis Project API E&P Standards Conference Applications of Standards Research, 24 June 2008.
Application of the Direct Optimized Probabilistic Calculation Martin Krejsa Department of Structural Mechanics Faculty of Civil Engineering VSB - Technical.
G.S.Pisarenko Institute for Problems of strength National Academy of Sciences, Ukraine G. V. Stepanov Decrease of residual stresses in structure elements.
FOOTINGS. FOOTINGS Introduction Footings are structural elements that transmit column or wall loads to the underlying soil below the structure. Footings.
Ken Youssefi Mechanical Engineering dept. 1 Mass Properties Mass property calculation was one of the first features implemented in CAD/CAM systems. Curve.
High strength materials are being increasingly used in designing critical components to save weight or meet difficult service conditions. Unfortunately.
1st Ukrainian-Hungarian Seminar “Safety, Reliability and Risk of Engineering Plants and Components”, Miskolc April 2006 Intergranular stress corrosion.
LOGO Soil slope stability analysis combining shear strength reduction and slip line method Supervisor: Yongchang Cai Ph.D. candidate: Jie Wu School of.
9 Torsion.
AMML Effect of rise, peak and fall characteristics of CZM in predicting fracture processes.
IPS NASU DYNAMICAL ANALYSIS AND ALLOWABLE VIBRATION DETERMINATION FOR THE PIPING SYSTEMS. G.S. Pisarenko Institute for Problems of Strength of National.
FRACTURE MECHANICS AND FATIGUE DESIGN HANS MF PANJAITAN Marinteknisk Senter Otto Nielsens Veg Trondheim Norway Mobile:
DESIGN FOR FATIGUE STRENGTH
Chapter 7 Fatigue Failure Resulting from Variable Loading
THE MODELING OF THE LIMIT STATE OF DUCTILE THICK-WALLED PIPES WITH AXIAL SURFACE DEFECTS Orynyak I.V., Ageyev S.M. G.S. Pisarenko Institute for Problems.
Chapter 7 Fatigue Failure Resulting from Variable Loading
3 Torsion.
HEAT TRANSFER FINITE ELEMENT FORMULATION
LIMIT LOAD CALCULATION MODEL OF DUCTILE FAILURE OF DEFECTIVE PIPE AND PRESSURE VESSEL Orynyak I.V. G.S. Pisarenko Institute for Problems of Strength, National.
I. M. DMYTRAKH and V. V. PANASYUK Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine 5 Naukova Street, Lviv, 79601, UKRAINE.
Mechanical Properties of Materials
Ship Computer Aided Design Displacement and Weight.
CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis –Thermal Analysis –Structural Dynamics –Computational.
EGM 5653 Advanced Mechanics of Materials
Bay Zoltán Foundation for Applied Reseach Institute for Logistics and Production Systems BAY-LOGI Assessment of crack like defect in dissimilar welded.
Fatigue Analysis in ASME B31.3 Piping
DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
Orynyak I.V., Borodii M.V., Batura A.S.
Methods to Maximize Design Life
CAD and Finite Element Analysis
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Experiment #1 Tension Test
Tool wear and tool life Lecture-02-Part-2.
CHAPTER FOUR: Tool Wear and Tool Life
Fracture mechanics Subjects of interest Introduction/ objectives
( BDA 3033 ) CHAPTER 6 Theories of Elastic Failures
3 Torsion.
( BDA 3033 ) CHAPTER 6 Theories of Elastic Failures
Simple Stresses & Strain
LINEAR ELASTIC FRACTURE MECHANICS
Presentation transcript:

Batura A.S., Orynyak I.V. IPS NASU Pisarenko’ Institute for Problems of Strength, Kyiv, Ukraine National Academy of Sciences of Ukraine Pisarenko’ Institute for Problems of Strength, Kyiv, Ukraine National Academy of Sciences of Ukraine ENGINEERING METHODS FOR STRESS INTENSITY FACTOR CALCULATION FOR 2-D AND 3-D BODIES WITH CRACKS

IPS NASU Weight Function Method for plane bodies - weight function, - the law of stress distribution, G – geometry parameters. - asymptotical (singular) part of WF, - correction (regular) part of WF. Then for any specified stress law(for example) obtain where and doesn’t depend upon geometry.

IPS NASU Weight Function Method for plane bodies In particular, for a plane body with an edge crack The main idea of Weight Function Methods: If we have the SIF solution for one particular loading we can obtain the SIF solution for any other law of loading.

IPS NASU Application of WFM for a pipes In the circular pipe additional force N and moment M appear. Angle and displacement discontinuity can be expressed in the next form: Crack compliance method (modification of Cheng & Finnie approach) where Y N, Y M – are the dimensionless SIF, induced by M and N as in the plane body,

IPS NASU Application of WFM for a pipes Crack compliance method (modification of Cheng & Finnie approach) - caused by loading,- caused by force, - caused by moment. Obtain result SIF : SIF is smaller than in the case of straight plane ! Using equilibrium equations for a ring and initial parameter method, get the expression for a dimensionless SIF decrease from the case of straight plane (Y 0 ): where - dimensionless pressure.

IPS NASU Application of WFM for a pipes Crack compliance method (modification of Cheng & Finnie approach) Result plots Conclusion: Advanced SIF formula for pipes was obtained. The feature of the SIF decreasing at rising of the pressure was found.

IPS NASU Weight Function Method for 3-D bodies (1) (2) - elliptical crack, - for semi- elliptical crack, - for quarter-elliptical crack -correction part - asymptotical part for elliptical crack.

IPS NASU Weight Function Method for 3-D bodies geometry dependent loading dependent If is known we obtain and can calculate for any law of loading. where - is a known SIF for any law of loading. Similarly to the 2-D case, So

SIF along crack front (angle), homogeneous loading IPS NASU Check of the PWFM accuracy for semi-elliptic cracks Check of the PWFM accuracy for semi-elliptic cracks 0 90

IPS NASU

Dependence SIF from ratio a/l

IPS NASU Dependence SIF from ratio a/l

IPS NASU Weight Function Method for 3-D bodies. Simplified (speed up) approach. Weight Function Method for 3-D bodies. Simplified (speed up) approach. The problem: triple integral (square and contour) with singularity at the edge high computation cost (especially for repeating – fatigue, stress-corrosion,… – calculations) !!! The solution: approximation of the stress law with function of the next type:, calculation of the SIF array for each stress function. Approximate SIF function can be build as linear combination of precalculated.. Approximate SIF function can be build as linear combination of precalculated.

IPS NASU Weight Function Method for 3-D bodies. Simplified (speed up) approach. Weight Function Method for 3-D bodies. Simplified (speed up) approach. Polynomial example The expression for dimensionless SIF functions :

IPS NASU Weight Function Method for 3-D bodies. Simplified (speed up) approach. Weight Function Method for 3-D bodies. Simplified (speed up) approach. Polynomial example For simple expressions for I ij A,C (α) were obtained : Depth of crackLoading (0, j)I 0j (0)I 0j (π/2)  =a/t jExactApprox.ExactApprox Semi-elliptical crack on the inner surface of the cylinder.

IPS NASU Application of the peveloped methods: Software “ReactorA” Application of the peveloped methods: Software “ReactorA” Residual life is calculated deterministically and probabilistically (MASTER CURVE approach) for various points of crack front This program is intended for calculation of reactor pressure vessel residual life and safety margin with respect to brittle fracture This program is intended for calculation of reactor pressure vessel residual life and safety margin with respect to brittle fracture. User sets loading and temperature fields in the different moments of time. Then material fracture toughness, embrittlement parameters are also set by user User sets loading and temperature fields in the different moments of time. Then material fracture toughness, embrittlement parameters are also set by user.

IPS NASU ReactorA advantages The sizes of stress and temperature fields' aren't bounded Number of time moments is bounded only by the memory size Cladding is taken into account Welding seam and heat-affected area are taken into account Deterioration is taken into account not only as shift of the material fracture toughness function but also as its inclination Original feature of the software is using of the author variant of the weight function method. It allows to set loading on the crack surface in the form of table. The sizes of stress and temperature fields' aren't bounded Number of time moments is bounded only by the memory size Cladding is taken into account Welding seam and heat-affected area are taken into account Deterioration is taken into account not only as shift of the material fracture toughness function but also as its inclination Original feature of the software is using of the author variant of the weight function method. It allows to set loading on the crack surface in the form of table.

Input Data 1) Stress field for time Table arbitrary size IPS NASU 3. Residual Life calculation of the NPP pressure vessel using fracture mechanics methods

IPS NASU 2) Temperature field for time Input Data Table arbitrary size

a ) Axial with weld seam IPS NASU Input Data weld seam heat-affected zone base material cladding crack weld seam heat-affected zone base material cladding crack base material cladding crack base material cladding crack b) circumferential 3) Crack types

IPS NASU 4) The basic material characteristics 1. Arctangents 2. Exponent Common shape of the crack growth resistance function is for user function A takes from coordinates of first point Common shape of the crack growth resistance function is for user function A takes from coordinates of first point 3. User (pointed) function

IPS NASU 1. Shift 2. Inclination 5) Shift and inclination conceptions

IPS NASU a)Analytical form b)Table form 6) Dependence of shift on radiation

IPS NASU Results Scenario – Break of the Steam Generator Collector WWER-1000 operated at full power It is given : - stress field, - temperature field, = 1000, 2000, 2800, 3000, 3160, 3600, 4000 sec - time points It is given : - stress field, - temperature field, = 1000, 2000, 2800, 3000, 3160, 3600, 4000 sec - time points Axial crack. Half-length l - 40 мм., depth a - 50 мм. Axial crack. Half-length l - 40 мм., depth a - 50 мм.

IPS NASU a) Dependences of the calculated and critical SIF from temperature for time = 3000 sec SIF for base material --//-- for weld seam Critical SIF for base material --//-- for weld seam --//-- for heat-affected area SIF for base material --//-- for weld seam Critical SIF for base material --//-- for weld seam --//-- for heat-affected area

IPS NASU history for basic material --//-- for weld seam critical SIF for basic material --//-- for weld seam --//-- for heat-affected area history for basic material --//-- for weld seam critical SIF for basic material --//-- for weld seam --//-- for heat-affected area b) History of the dependences calculated SIF from temperature for some points and all times intervals and critical SIF TT

IPS NASU fields for chosen history points minimal margin margin for time points fields for chosen history points minimal margin margin for time points c) Table of the calculated temperature margin for all points of crack front and time points c) Table of the calculated temperature margin for all points of crack front and time points

calculated temperature margin shift of the temperature by user table shift of the temperature by analytical model calculated temperature margin shift of the temperature by user table shift of the temperature by analytical model IPS NASU d) Figure of the calculated margin

IPS NASU New geometry for axial crack Calculated temperature margin Half length l - 60мм Depth a - 40 мм Half length l - 60мм Depth a - 40 мм Results for other crack geometries

New geometry for axial crack Half length l - 40мм Depth a - 60 мм Half length l - 40мм Depth a - 60 мм IPS NASU Calculated temperature margin

Half length l - 60мм Depth a - 30 мм Half length l - 60мм Depth a - 30 мм New geometry for circumferential crack IPS NASU calculated temperature margin

IPS NASU 1. Failure probability calculation for structural element 2. Failure probability calculation for crack 3. Calculation parameters 4. In addition К min, K 0 (Т), В 0, b - arbitrarily P f = 63,2% К min = 20 В 0 = 25 мм b = 4 Implementation MASTER CURVE Conception Implementation MASTER CURVE Conception

For time  T =0 failure probability equal 1.07* IPS NASU Time point t 4 = 3000 sec Axial crack half length l - 40 мм., depth a - 50 мм. Time point t 4 = 3000 sec Axial crack half length l - 40 мм., depth a - 50 мм. SIF dependences on angle Result for main scenario

Dependences of logarithm probability on  T IPS NASU

Probability density for  T = 50

IPS NASU Application of the developed methods: Software “WFM” Application of the developed methods: Software “WFM” SIF, grow of the crack dimensions in time and endurance are calculated. “Until specified depth” or “until specified count of cycles” modes are presented. This program is intended for SIF calculation for different (1-D and 2-D) types of cracks and for endurance estimation with using different fatigue and stress- corrosion laws. User sets “maximum”, “minimum” and “corrosion” loading fields.

1. Damages 2. Cracks IPS NASU WFM: implemented types of damages and cracks

IPS NASU WFM: example of result window. Input and output data can be exchanged with clipboard.

IPS NASU CONCLUSION 1. Efficient methods of stress intensity factor (SIF) calculation are developed. 2. The computer software which reflected all modern requirements for brittle strength analysis of Reactor Pressure Vessel is created. 1. Efficient methods of stress intensity factor (SIF) calculation are developed. 2. The computer software which reflected all modern requirements for brittle strength analysis of Reactor Pressure Vessel is created.