LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.

Slides:



Advertisements
Similar presentations
Simulating Radioactive Decays in Next Generation Geoneutrino Detectors Megan Geen Wheaton College Advisor: Nikolai Tolich August 17, 2011.
Advertisements

R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
Cherenkov Detectors. Index of Refraction When light passes through matter its velocity decreases. –Index of refraction n. The index depends on the medium.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
S. Bricola, A. Menegolli, M. Prata, M.C. Prata, G.L. Raselli, M. Rossella, C. Vignoli INFN and University of Pavia - Via Bassi, 6 – Pavia – Italy.
CRAYS and TA telescope calibration ICRR N. Sakurai, M. Fukushima Utah University L. Wiencke.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Liquid Scintillation Detectors for High Energy Neutrinos John G. Learned Department of Physics and Astronomy, University of Hawaii See: arXiv:
Double Beta Decay With 20-ton Metal Loaded Scintillators A Detector for DUSEL? Frank Calaprice Princeton University Aldo Ianni LNGS.
Lens ALens B Avg. Angular Resolution Best Angular Resolution (deg) Worst Angular Resolution (deg) Image Surface Area (mm 2 )
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
FIBER PROPERTIES Transmission characteristics of a fiber depends on two important phenomena Attenuation Dispersion Attenuation or transmission loss Much.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP.
Attenuation by absorption and scattering
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
The see through body A BRIEF INTRODUCTION BY: ABEL RUIZ.
Geo Neutrino Detection at KamLAND F.Suekane RC S Tohoku University 5th Workshop on Applied Antineutrino Physics (AAP2009) Angra dos Reis, Brazil 20/03/2009.
Simulation study of RENO-50 Jungsic Park Seoul National University RENO-50 International Workshop June 13-14, 2013 Hoam Faculty House, Korea.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
MiniBooNE Michel Sorel (Valencia U.) for the MiniBooNE Collaboration TAUP Conference September 2005 Zaragoza (Spain)
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
The calibration and alignment of the LHCb RICH system Antonis Papanestis STFC - RAL for the LHCb Collaboration.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
LENA Photosensor R&D Marc Tippmann Lothar Oberauer, Michael Wurm, Gyorgy Korga, Quirin Meindl, Michael Nöbauer, Thurid Mannel, Martin Zeitlmair, German.
O. Atramentov, American Linear Collider Workshop, Cornell U July 2003 Fast gas Cherenkov Luminosity Monitor Progress Update O. Atramentov, J.Hauptman.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
LOSSES IN FIBER BY:Sagar Adroja.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
MiniBooNE MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
RICH MEETING - CERN - April 21 st 2004 Università degli Studi di Milano Bicocca Variation of Refractive Index inside an Aerogel Block Davide Perego.
Solar Neutrino Results from SNO
Cherenkov Tracking Calorimeters D. Casper University of California, Irvine.
SrCl 2 crystal for EC/  + search Presented by J.H. So (KNU)
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
Detector R&D for European projects Liquid Scintillator: LENA ICFA Neutrino European Meeting Paris, January 8 – 10, 2014 Wladyslaw H. Trzaska.
Status and Prospects of Reactor Neutrino Experiments Soo-Bong Kim (KNRC, Seoul National University) “NuPhys 2014: Prospects in Neutrino Physics, London,
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
Daya Bay II:the Next Generation Reactor Neutrino Experiment
Simulation for DayaBay Detectors
Status of GEANT4 in LHCb S. Easo, RAL, The LHCb experiment.
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Calibration, Simulations, and “Remaining” Issues
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Davide Franco for the Borexino Collaboration Milano University & INFN
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Design Requirements for Jinping Underground Neutrino Experiment
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
COMPTON SCATTERING IN FORWARD DIRECTION
Presentation transcript:

LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm

Outline Properties of Scintillation Signal Scattering Length Experiment Light Yield Time Resolution LENA Scintillator Characterization – Michael Wurm, TUM1

LENA SCIENTIFIC GOALS Low-Energy Neutrino Astrophysics SCIENTIFIC GOALS  Nucleondecay  Supernova neutrinos  Diffuse SN neutrinos  Geoneutrinos  Solar neutrinos  Atmosphericneutrinos  Neutrino propertiesby reactors/accelerators  Indirectdark matter search Liquid Scintillator ca. 50kt PXE/LAB Inner Nylon Vessel radius: 13m Buffer Region inactive, Dr = 2m Steel Tank, PMs r = 15m, h = 100m  high demands on the optical transparency of the scintillator Water Cherenkov Veto 1500 PMTs, Dr > 2m Egg-Shaped Cavern about 10 8 m 3 Overburden: 4000 mwe

Signal Energy and Timing Energy Resolution Light Yield (/MeV):10 4 Photoactive Coverage: 30% PMT Photoefficiency:20% + Light Absorption/Scattering Photoelectrons/MeV<600 e Light intensity in distance r: I 0 initial intensity Lattenuation length: LENA Scintillator Characterization – Michael Wurm, TUM3

Signal Energy and Timing Energy Resolution Light Yield (/MeV):10 4 Photoactive Coverage: 30% PMT Photoefficiency:20% + Light Absorption/Scattering Photoelectrons/MeV<600 Timing Resolution Fluorescence constants: fast componentca. 3ns slow component(s)>20ns Time of flight diff. O(100ns) Light Scattering Leading edge determines timing Trailing edge for particle ID Light scattering has impact on both light yield and pulse shape... LENA Scintillator Characterization – Michael Wurm, TUM4

Microscopic Processes Mie Scattering off small particulates (  m) in the liquid anisotropic emission increased forward scattering amplitude, depending on diameter removable by filtering θ θ Rayleigh Scattering off bound electrons in the scintillator anisotropic emission: fully polarized for orthogonal parallel to light direction Absorption/Reemission off organic molecules/impurities in the liquid isotropic re-emission: depends on wavelength/production process LENA Scintillator Characterization – Michael Wurm, TUM5

Experimental Setup measurement at several angles and for both polarizations determines contributions of Rayleigh scattering, absorption-reemission etc. =430±5nm x10 -5 monitors beam intensity measures scattered intensity LENA Scintillator Characterization – Michael Wurm, TUM6

Exemplary Measurement Result parallel to beam orthogonal to beam Sample: Dodecane Wavelength: 415nm Q=N s /N b is the (corrected) ratio of PM intensities  main contribution: Rayleigh scattering (large polarization difference)  no discernible increase in forward scattering: minor Mie-contribution  small orthogonal component at 90°: absorption/re-emission processes LENA Scintillator Characterization – Michael Wurm, TUM7

Scattering Length Results  no hints for Mie-scat.  anisotropic scattering in good agreement with Rayleigh expectation  correct wavelength- dependence found  literature values for PC, cyclohexane correctly reproduced Results for =430nm L S = 22±3 m after purification in Al 2 O 3 -column

Corrections and Uncertainties  unevenness of sample glass surface:4%(unc.)  beam reflection on glass, alignment, refractive index:0.3%(cor.)  background subtraction of glass scattering:diff.(unc.)  scattering solid angle (PM-S field of view):4%(unc.)  variation of PM-S efficiency with scattering angle:7%(unc.)  relative photoefficiency of the PMs:7%(cor.)  greyfilter transmission (wavelength-dependent):3.4%(cor.)

MC Simulation of Light Yield Input Parameters:  event in the center  10 4 photons/MeV  LENA radius: 15m  optical coverage: 0.3  photoefficiency: 0.2  attenuation length (from previous experi- ments at MPIK, TUM and SNO+ R&D)  overall range: photoelectrons/MeV (optimum: 600pe/MeV) corresponding energy resolution at 1MeV: 7.1% to 4.6%  yield could be increased by state-of-the-art photocathodes (  ->40%) LENA Scintillator Characterization – Michael Wurm, TUM10

Impact on Time Resolution Rise time determines resolution. General trends:  fast fluorescence component has largest impact on both rise time t s and decay flank  s  no effect of refractive index  lower scattering length smears out signal: t s larger  increase in attenuation length decreases t s LENA Scintillator Characterization – Michael Wurm, TUM11

Summary Scattering length of all current LENA scintillator candidates has been measured. Impact on both light yield and time resolution was tested. LAB provides larger light yield, while PXE (+C12) offers better time resolution. Scattering length of all current LENA scintillator candidates has been measured. Impact on both light yield and time resolution was tested. LAB provides larger light yield, while PXE (+C12) offers better time resolution. LENA Scintillator Characterization – Michael Wurm, TUM12