ELI-NP laser IP cavity 1)Requests 2)Recirculating cavity 1) biblio 2)limits 3)Fabry-Perot cavity solution a)Technical Contraints  limits b)Possible solution.

Slides:



Advertisements
Similar presentations
PPLN Frequency- Doubling Project Diana Parno Hall A Parity Collaboration Meeting May 17, 2007.
Advertisements

ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.
T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
Optical sources Lecture 5.
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
CAVITY RING DOWN SPECTROSCOPY
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Broadband Cavity Enhanced Absorption Spectroscopy With a Supercontinuum Source Paul S. Johnston Kevin K. Lehmann Departments of Chemistry & Physics University.
A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
LSRL 06 Nov, 2003, IAEA CRP Meeting in Vienna Feasibility study on Scalable Self-Phase Locking of two beam combination using stimulated Brillouin scattering.
High finesse multi-mirror optical cavities with feedback 1.Fabry-Perot cavity in cw mode: feedback & optical issues 1.Comparison with Sapphire parameters.
Overview of enhancement cavity work at LAL/Orsay  INTRO:  Optical cavity developments at LAL  Results on optical cavity in picosecond regime  Polarised.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
Polarization-preserving of laser beam in Fabry Perot Cavity Accelerator center, IHEP Li Xiaoping.
Installation of a Four-mirror Fabry-Perot cavity at ATF 1.Our setup/goal 2.Why 4 mirrors ? 3.The ATF 4-mirror cavity 4.The optical scheme 5.The laser/cavity.
1 Polarisation effects in 4 mirrors cavities Introduction Polarisation eigenmodes calculation Numerical illustrations F. Zomer LAL/Orsay Posipol 2008 Hiroshima.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Experimental Effort for Alternative Schemes Experimental Effort for Alternative Schemes Hirotaka Shimizu Hiroshima University ILC2007 at DESY Hamburg.
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Status of R&D of Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Out Look KEK, Hiroshima University LAL (Orsay) in Collaboration withCELIA.
1 Junji Urakawa (KEK, Japan) at Sapphire day, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
1 Fabry-Perot cavity & pulsed laser J. Bonis, V. Brisson, J.N. Cayla, R. Chiche, R. Cizeron, J. Colin, Y. Fedala, G. Guilhem, M. Jacquet-Lemire, D. Jehanno,
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
IPBSM status and plan ATF project meeting M.Oroku.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Feedback R&D for Optical Cavity Ryuta TANAKA (Hiroshima univ.) 19 th Feb 2013 SAPPHiRE DAY.
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Nonplanar Cavity Construction and Locking Technique for High Finesse Cavity Soskov V., Chiche R., Cizeron R., Jehanno D., Zomer F. Laboratoire de l’Accélérateur.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Folienvorlagen für Seminarvortrag. Novel laser concepts HR-mirror out coupling mirror disc cooling diode laser focusing optic diode laser focusing optic.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Status and Plan of Compton  -ray Generation at KEK-ATF Japanese Labs. : KEK, ATF group, Hiroshima University Tsunehiko OMORI (KEK) for 13 February 2014.
Haifeng Huang and Kevin K. Lehmann
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
Nonlinear generation of radiation by periodically poled LiTaO 3 crystals Single pass UV generation Intracavity Second Harmonic Generation HWP: half wave.
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Photon beam generation at PERLE
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
An H- stripping laser using commercial, diode-pumped Nd:YAG amplifiers Russell Wilcox Laser Stripping Workshop, April 11, 2011.
Laser source for PLC Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Laser Request for PLC 2.Technical solutions  Non linear.
Optical Cavity construction at LAL  2000 : polarimeter at HERA 2-mirror cavity cw ND:YAG laser, F=30000 (  ~ )  2005 : Ti:sapph pulsed laser.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
THE COMPACT X-RAY SOURCE THOMX The machine Applications Some technical issues (optics)
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Interferometer configurations for Gravitational Wave Detectors
Fabry-Perot cavity R&D at Orsay
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Single and dual wavelength Er:Yb double clad fiber lasers
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Photon beam generation at PERLE
High power high energy ultrafast fiber amplifiers
Conveners: L.Serafini,F. Villa
Principle of Mode Locking
Compton effect and ThomX What possible future?
Development of Optical Resonant Cavities for laser-Compton Scattering
R&D of Freedback-Free Optical Resonant Cavity
Physical Layer Part 1 Lecture -3.
Laser oscillation Laser is oscillator
Pierre Favier Laboratoire de l’Accélérateur Linéaire
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Radiation pressure induced dynamics in a suspended Fabry-Perot cavity
Presentation transcript:

ELI-NP laser IP cavity 1)Requests 2)Recirculating cavity 1) biblio 2)limits 3)Fabry-Perot cavity solution a)Technical Contraints  limits b)Possible solution : 2 frequencies 1)Requests 2)Recirculating cavity 1) biblio 2)limits 3)Fabry-Perot cavity solution a)Technical Contraints  limits b)Possible solution : 2 frequencies 1

2... 5ns (200MHz)... 5ns 1ms (100Hz) Assume the following Laser request at the Compton IP ~1µm  max ~10ps P peak =10 11 W =10kW ~1µm  max ~10ps P peak =10 11 W =10kW

Recirculating cavity M. Y. Shverdin et al. High Power Picosecond Laser Pulse Recirculation Opt Lett35(2010)2224 In the 2010 paper: incident 1µm beam and 177mJ after freq doubling. Pulse energy measurement turn after turn : In the 2010 paper: incident 1µm beam and 177mJ after freq doubling. Pulse energy measurement turn after turn : 6% loss per cavity round trip 3 LLNL (& now BNL/AFT) method 50th pulse

Recirculating cavity experimental results  Estimated integrated pulse energy : 3J in total : Need 33 times more  : need 10 times more ?  Nothing after 50 pulses : need less than 50 pulses  No information on the laser beam profil quality  Estimated integrated pulse energy : 3J in total : Need 33 times more  : need 10 times more ?  Nothing after 50 pulses : need less than 50 pulses  No information on the laser beam profil quality 4

5 Technique limitations Numerical estimate in : Non linear effects Induced in the freq doubler The highest the efficiency the worse the beam profile

6 ~50% Compton losses after 20 passes  spectrum modified after 20 round trips

A new démonstration experiment à BNL/ATF (2011 ) R&D experiment 2-3J total(idem paper Hz Upgrade foreseen at Hz But still an R&D R&D experiment 2-3J total(idem paper Hz Upgrade foreseen at Hz But still an R&D 7

8 Bibliography Summary  Advantage : easy to enter the cavity  Drawbacks/issues  Non-linear effects  Nb of passes limited (~20)  Beam profil not shown & beam ellipticity not adressed  mirror damage issue not adressed (40cmx40cm cristal for 1J…)  Still frar from being a mature techno  visit/contact BNL Bibliography Summary  Advantage : easy to enter the cavity  Drawbacks/issues  Non-linear effects  Nb of passes limited (~20)  Beam profil not shown & beam ellipticity not adressed  mirror damage issue not adressed (40cmx40cm cristal for 1J…)  Still frar from being a mature techno  visit/contact BNL

9 Puzzlingly LLNL proposes another Techniques for an ILC gg collider laser source (laser request not so far from ELI-NP !) Puzzlingly LLNL proposes another Techniques for an ILC gg collider laser source (laser request not so far from ELI-NP !)

Oscillator 200MHz Oscillator 200MHz Ampli  t~500ns 5mJ/pulses 100 pulses 50W Ampli  t~500ns 5mJ/pulses 100 pulses 50W « empty » optical resonator F~600 1J/pulses for 100 pulses : 10kW 1 circulating pulse of 1J « empty » optical resonator F~600 1J/pulses for 100 pulses : 10kW 1 circulating pulse of 1J Scheme Issues 1.Laser amplifier cost >3M€ 1.Faisable (1rst discussion with Amplitude System, SupOptics laser groupe) 2.Effects of a 1J pulse inside an optical resonator 1.Mirror Fluence damage threshold constraint 1.A priori also a problem for the recirculating cavity 2.Cavity feedback 1.Thermal load in the mirors 2.Radiation pressure Issues 1.Laser amplifier cost >3M€ 1.Faisable (1rst discussion with Amplitude System, SupOptics laser groupe) 2.Effects of a 1J pulse inside an optical resonator 1.Mirror Fluence damage threshold constraint 1.A priori also a problem for the recirculating cavity 2.Cavity feedback 1.Thermal load in the mirors 2.Radiation pressure 10 Fabry-Perot technique

Figure 1: Dielectric bulk material, exposed to 0.9 ps laser pulses at l=532 nm, two spots in the middle of the picture show damage onset. The weaker of those spots was irradiated with a laser fluence just above the damage threshold. Figure 1: Dielectric bulk material, exposed to 0.9 ps laser pulses at l=532 nm, two spots in the middle of the picture show damage onset. The weaker of those spots was irradiated with a laser fluence just above the damage threshold. Results, 0.9 ps pulses The same measurements as for 5 ns pulses were carried out in order to compare damage thresholds for different time domains. Single shot results were Fth = 2,37 J/cm2 for bulk material (fused silica), Fth = 0,35 J/cm2 for the untreated HR mirror stack and Fth = 0,25 J/cm2 for the dielectric grating. Multishot measurements (n=100) gave Fth = 0,20 J/cm2 for the mirror and Fth = 0,26 J/cm2 for the grating, respectively. Results, 0.9 ps pulses The same measurements as for 5 ns pulses were carried out in order to compare damage thresholds for different time domains. Single shot results were Fth = 2,37 J/cm2 for bulk material (fused silica), Fth = 0,35 J/cm2 for the untreated HR mirror stack and Fth = 0,25 J/cm2 for the dielectric grating. Multishot measurements (n=100) gave Fth = 0,20 J/cm2 for the mirror and Fth = 0,26 J/cm2 for the grating, respectively. 11 For =532nm Damage threshold measurements of gold and dielectric coated optical components at 50 fs – 5 ns R. Bödefeld, W. Theobald, J. Schreiber, H. Gessner, E. Welsch, T. Feurer, R. Sauerbrey Damage threshold measurements of gold and dielectric coated optical components at 50 fs – 5 ns R. Bödefeld, W. Theobald, J. Schreiber, H. Gessner, E. Welsch, T. Feurer, R. Sauerbrey

Depends on the spot size Almost a facteur 10 for this exemple Depends on the spot size Almost a facteur 10 for this exemple Depends on, for 0.5µm : 2 times worse than 1µm ! 12 Depends on nb of pulses Damage threshold à 200MHz ??? Depends on nb of pulses Damage threshold à 200MHz ???

13 For 10ps : damage fluence ~3 times % 1ps  Threshold Fmax~0.6J/cm 2 for  Assume F max =0.1J/cm 2 For 10ps : damage fluence ~3 times % 1ps  Threshold Fmax~0.6J/cm 2 for  Assume F max =0.1J/cm 2 spotsize of the beam on the cavity mirror  For E max =1J, spotsize=10cm 2 ! spotsize of the beam on the cavity mirror  For E max =1J, spotsize=10cm 2 !

d1 d3  1 er waist  2 ème waist d4 d2  ≠ 0 : 2 plans à considérer Plan tangentiel(=plan cavité) f=Rcos  /2 Plan sagittal (plan cavité) f=R/(2cos  ) Plus    h  grand plus le mode propre de la cavité est elliptique Condition de stabilité : INTRODUCTION Bow-tie cavity : basic paraxial expressions R f=R/2 Normal incidence  = 0 : h  L=d2+d3+d4 L tot =d1+L électrons electrons

Example : ThomX L tot = m, d1=2m  = atan(h/d1)/2=0.6°  cross = atan(2h’/d1) = 1.7° Waists in µm Radii on mirrors in mm

Elliptical mode

d1d1 d3  d4 d2 h  1 er et 2 ième waist au même endroit électrons Drawback : beam pipe cut Autre géométrie, plus astucieuse : (M. Lacroix pour ThomX) Autre géométrie, plus astucieuse : (M. Lacroix pour ThomX) X rays We can make use of the ellipticity : The highest h the highest the ellipticipty  h must be as small as possible  The X-angle can be minimized with concave mirror with rectangular edges A minima : Diamètre du miroir = 6  M,min ~ 6*[1,3]mm R mirror = [3,9]mm Soit h min = 2[3,9]mm = [6,18]mm X-angle ~(R mirror +R beam pipe )/(d1/2) ~[9,15]/250~[2°,3.5°] We can make use of the ellipticity : The highest h the highest the ellipticipty  h must be as small as possible  The X-angle can be minimized with concave mirror with rectangular edges A minima : Diamètre du miroir = 6  M,min ~ 6*[1,3]mm R mirror = [3,9]mm Soit h min = 2[3,9]mm = [6,18]mm X-angle ~(R mirror +R beam pipe )/(d1/2) ~[9,15]/250~[2°,3.5°]

d 1 =  +R/cos(  )

L tot =c/f rep  1.5m pour f rep =200MHz d1d1 d3  d4 d2  L=d 2 +d 3 +d 4 L tot =d 1 +L d 1 =  +R/cos(  ) L=d 2 +d 3 +d 4 L tot =d 1 +L d 1 =  +R/cos(  ) For =532nm

Non-paraxial region

For =532nm ~300mJ/pulse for =1µm 100MHz ~300mJ/pulse for =1µm 100MHz Pushing the parameters

22 Feddback issues Cavity finesse F   /(1-r1*r2*r3*r4)  ‘phase matching’ r1=r2*r3*r4  F   /(1-r1^2)   /T1  power/energy enhencement factor  F/   Cavity resonance linewidth  FWHM  L=2  F  if the cavity length is shifted by  L=  F half of the power is lost Pound-Dever-Hall feedback methode  Linear error signal if cavity length variation < /F  Laser resonance frequency  nc/L,  Feedback control accuracy : At LAL we have already achieved But here we see 2 difficulties related to the high pic power

23 1rst problem : To fill all the pulses within a time interval < feedback bandwidth (1MHz AT MOST !)  The pulse stacking must not change the cavity length by more than ~ /F 2nd problem If the cavity has been correctly filled : no perturbation on the cavity length > ~ /F must be induced by the circulation of the very high energy pulse 1rst problem : To fill all the pulses within a time interval < feedback bandwidth (1MHz AT MOST !)  The pulse stacking must not change the cavity length by more than ~ /F 2nd problem If the cavity has been correctly filled : no perturbation on the cavity length > ~ /F must be induced by the circulation of the very high energy pulse What can change the cavity length within  t>1/MHz ? The radiation pressure : for a pulse of 10ps & 1J stength=2P/c~700 N  equivalent to a weight of 70kg falling on the mirrors each 5ns ! Stress wave propagates ~ at the sound speed (~6km/s in glass) The thermo-elastic coupling Absorption of the mirror coating layers ~1ppm But very fast mechanism can occur with 10ps pulses… E.g. What can change the cavity length within  t>1/MHz ? The radiation pressure : for a pulse of 10ps & 1J stength=2P/c~700 N  equivalent to a weight of 70kg falling on the mirrors each 5ns ! Stress wave propagates ~ at the sound speed (~6km/s in glass) The thermo-elastic coupling Absorption of the mirror coating layers ~1ppm But very fast mechanism can occur with 10ps pulses… E.g.

24  One can ‘solve’ the 2 nd problem using two wavelengths with high/low finesse  CALVA (LAL R&D)/VIRGO upgrade, see next slide  To look at the 1rst problem a possible experiment at the LASERX facilitiy could help (Ti:sapph 30fs,…100ns)  (R. Chiche & LaserX ‘young’ group, K. Cassou, Guillebaud, S. Kazamias)  One can ‘solve’ the 2 nd problem using two wavelengths with high/low finesse  CALVA (LAL R&D)/VIRGO upgrade, see next slide  To look at the 1rst problem a possible experiment at the LASERX facilitiy could help (Ti:sapph 30fs,…100ns)  (R. Chiche & LaserX ‘young’ group, K. Cassou, Guillebaud, S. Kazamias) O L~10cm R R ND:YAG cw <1W laser ND:YAG cw <1W laser ~ ~ modulation X X 1GHz synthetiser demodulation pdiode Error Signal  cavity length variation induced by high pulse power bandwidth ~1GHz Dynamic range : /F~20nm if F=50 bandwidth ~1GHz Dynamic range : /F~20nm if F=50 High energy pulse

Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Freq doubler preamplifier 4-mirror cavity Optical switch+ Ampli :  T~500ns-1µs 5mJ/pulses 100 pulses 50W Optical switch+ Ampli :  T~500ns-1µs 5mJ/pulses 100 pulses 50W Servo feedback Servo feedback grating Cavity round trip length L=c/200MHz=1.5m Fibre connectorised ? Error signals Reflected signals transmited signals 2 frequencies solution 2 nd harmonic Freq doubler

26 Error signal Linearity range Corresponds to  L= /F Linearity range Corresponds to  L= /F Using the frequency doubling : F  ~1000 for  precise feedback BUT  L<0.5nm F  ~50 for   L<20nm  can recover the locking after the macro pulse pass (1-2µs) Using the frequency doubling : F  ~1000 for  precise feedback BUT  L<0.5nm F  ~50 for   L<20nm  can recover the locking after the macro pulse pass (1-2µs)

27 Recent improvement from VIRGO Linearity range increased by a factor ~10  L~ /(10F) ‘just’ by dividing the error signal by the transmited signal Linearity range increased by a factor ~10  L~ /(10F) ‘just’ by dividing the error signal by the transmited signal Using the frequency doubling : F    ~1000 for  precise feedback BUT  L<5nm F  ~50 for   L<200nm  recover the locking after the macro pulse pass (1-2µs) starts to be feasible with the doubled frequency  find the optimum for F  F  Using the frequency doubling : F    ~1000 for  precise feedback BUT  L<5nm F  ~50 for   L<200nm  recover the locking after the macro pulse pass (1-2µs) starts to be feasible with the doubled frequency  find the optimum for F  F 

Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Frequency doubler preamplifier 4-mirror cavity Optical switch+ Ampli :  T~500ns-1µs 5mJ/pulses 100 pulses 50W Optical switch+ Ampli :  T~500ns-1µs 5mJ/pulses 100 pulses 50W Servo feedback Servo feedback grating Cavity round trip length L=c/200MHz=1.5m Fibre connectorised ? Error signals Reflected signals transmited signals 2 frequencies solution 1 rst harmonic ~1µm

29 summary  Damage threshold limits the max pulse energy in a ‘ring cavity’  We have some experience in high finesse cavity locking  A ‘burst’ regime should work but one must estimate the effects of a ‘huge’ circulating pulse energy

30 LMA designed mirrors with F=50 at /2

31 Il faut faire tourner du code aux elements fini !  calculer l’evolution temporelle des deformations  induite par la pression de radiation  induites par la diffusion de la chaleur Et penser à une manipe auprès d’une source de laser intense … Il faut faire tourner du code aux elements fini !  calculer l’evolution temporelle des deformations  induite par la pression de radiation  induites par la diffusion de la chaleur Et penser à une manipe auprès d’une source de laser intense …

On pose h=15mm, d 1 =R/cos , R=0.5m, On tilt tous les miroirs de  x,y =(-1,0,1)µrad  3 8 =6561 combinaisons de désalignements – Pour chaque combinaison on applique le principe de Fermat pour trouver l’axe optique (on itère trois fois  précision Matlab) – On calcul le déplacement de l’axe optique sur tous les miroirs par rapport aux centres (alignement parfait) – Tolérance = le plus grand déplacement parmi les 3 8 combinaisons Résultats : – 2µm sur les miroirs sphériques – 1µm sur les miroirs plans – 2µm au point de croisement laser électron 0.5’ ~13nm 1µrad 2 ème ‘bonne propriété’ d’une cavité 4 miroirs : tolérances mécaniques

On translate tous les miroirs de  x,y,z =(-1,1)µm  2 12 =4096 combinaisons on obtient –3µm sur les miroirs sphériques –5µm sur les miroirs plans –1µm au point de croisement laser électron Calculation of the cavity eigenmodes  Linear polarisation is preserved  for 1µm, 1µrad mirror motions  And 1mm, 1mrad missalignments Calculation of the cavity eigenmodes  Linear polarisation is preserved  for 1µm, 1µrad mirror motions  And 1mm, 1mrad missalignments