A Separator Theorem for Graphs with an Excluded Minor and its Applications Paul Seymour Noga Alon Robin Thomas Lecturer : Daniel Motil.

Slides:



Advertisements
Similar presentations
Great Theoretical Ideas in Computer Science for Some.
Advertisements

 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent,
Covers, Dominations, Independent Sets and Matchings AmirHossein Bayegan Amirkabir University of Technology.
Chapter 8 Topics in Graph Theory
Walks, Paths and Circuits Walks, Paths and Circuits Sanjay Jain, Lecturer, School of Computing.
Presented by Yuval Shimron Course
Bart Jansen, Utrecht University. 2  Max Leaf  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least.
1 NP-completeness Lecture 2: Jan P The class of problems that can be solved in polynomial time. e.g. gcd, shortest path, prime, etc. There are many.
Lecture 16: DFS, DAG, and Strongly Connected Components Shang-Hua Teng.
GOLOMB RULERS AND GRACEFUL GRAPHS
Combinatorial Algorithms
CS774. Markov Random Field : Theory and Application Lecture 17 Kyomin Jung KAIST Nov
Noga Alon Institute for Advanced Study and Tel Aviv University
The number of edge-disjoint transitive triples in a tournament.
Fast FAST By Noga Alon, Daniel Lokshtanov And Saket Saurabh Presentation by Gil Einziger.
Mycielski’s Construction Mycielski’s Construction: From a simple graph G, Mycielski’s Construction produces a simple graph G’ containing G. Beginning with.
2007 Kézdy André Kézdy Department of Mathematics University of Louisville * Preliminary report.  More -valuations for trees via the combinatorial nullstellensatz*
Perfect Graphs Lecture 23: Apr 17. Hard Optimization Problems Independent set Clique Colouring Clique cover Hard to approximate within a factor of coding.
Definition Hamiltonian graph: A graph with a spanning cycle (also called a Hamiltonian cycle). Hamiltonian graph Hamiltonian cycle.
A general approximation technique for constrained forest problems Michael X. Goemans & David P. Williamson Presented by: Yonatan Elhanani & Yuval Cohen.
Counting Proper Colors Given k  N and a graph G, the value  (G;k) is the number of proper colorings f: V(G)  [k]. The set of available colors is [k]={1,…,k};
Crossing Lemma - Part I1 Computational Geometry Seminar Lecture 7 The “Crossing Lemma” and applications Ori Orenbach.
A 2-Approximation algorithm for finding an optimum 3-Vertex-Connected Spanning Subgraph.
1 Separator Theorems for Planar Graphs Presented by Shira Zucker.
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
Minimum Spanning Trees. Subgraph A graph G is a subgraph of graph H if –The vertices of G are a subset of the vertices of H, and –The edges of G are a.
Introduction to Graph Theory
Copyright © Cengage Learning. All rights reserved.
1 A fast algorithm for Maximum Subset Matching Noga Alon & Raphael Yuster.
Simple and Improved Parameterized Algorithms for Multiterminal Cuts Mingyu Xiao The Chinese University of Hong Kong Hong Kong SAR, CHINA CSR 2008 Presentation,
Graph Coalition Structure Generation Maria Polukarov University of Southampton Joint work with Tom Voice and Nick Jennings HUJI, 25 th September 2011.
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
Lecture 22 More NPC problems
Approximating the Minimum Degree Spanning Tree to within One from the Optimal Degree R 陳建霖 R 宋彥朋 B 楊鈞羽 R 郭慶徵 R
Edge-disjoint induced subgraphs with given minimum degree Raphael Yuster 2012.
 2004 SDU Lecture 7- Minimum Spanning Tree-- Extension 1.Properties of Minimum Spanning Tree 2.Secondary Minimum Spanning Tree 3.Bottleneck.
The Tutte Polynomial Graph Polynomials winter 05/06.
Mycielski’s Construction Mycielski’s Construction: From a simple graph G, Mycielski’s Construction produces a simple graph G’ containing G. Beginning with.
5.2 Trees  A tree is a connected graph without any cycles.
1 The number of orientations having no fixed tournament Noga Alon Raphael Yuster.
15-853Page :Algorithms in the Real World Planar Separators I & II – Definitions – Separators of Trees – Planar Separator Theorem.
Graph Theory and Applications
Spanning tree Lecture 4.
Introduction to Graph Theory
NP-completeness NP-complete problems. Homework Vertex Cover Instance. A graph G and an integer k. Question. Is there a vertex cover of cardinality k?
1 Covering Non-uniform Hypergraphs Endre Boros Yair Caro Zoltán Füredi Raphael Yuster.
Introduction to Graph Theory
Great Theoretical Ideas in Computer Science for Some.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness Proofs.
NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholder to insert your own image. Fast.
Chromatic Coloring with a Maximum Color Class Bor-Liang Chen Kuo-Ching Huang Chih-Hung Yen* 30 July, 2009.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
COMPSCI 102 Introduction to Discrete Mathematics.
12. Lecture WS 2012/13Bioinformatics III1 V12 Menger’s theorem Borrowing terminology from operations research consider certain primal-dual pairs of optimization.
Approximation Algorithms by bounding the OPT Instructor Neelima Gupta
Approximation Algorithms based on linear programming.
Trees.
Richard Anderson Lecture 26 NP-Completeness
Richard Anderson Lecture 26 NP-Completeness
12. Graphs and Trees 2 Summary
Computability and Complexity
CS154, Lecture 16: More NP-Complete Problems; PCPs
Planarity Testing.
Bart M. P. Jansen June 3rd 2016, Algorithms for Optimization Problems
Introduction Wireless Ad-Hoc Network
V12 Menger’s theorem Borrowing terminology from operations research
CS154, Lecture 16: More NP-Complete Problems; PCPs
Winter 2019 Lecture 11 Minimum Spanning Trees (Part II)
Autumn 2019 Lecture 11 Minimum Spanning Trees (Part II)
Presentation transcript:

A Separator Theorem for Graphs with an Excluded Minor and its Applications Paul Seymour Noga Alon Robin Thomas Lecturer : Daniel Motil

A Separator Theorem for Graphs with an Excluded Minor and its Applications Introduction Let H be a h-vertex graph Let G be a n-vertex graph with nonnegative weights whose sum is 1, and with no minor isomorphic H We prove that there is a set X with less than h 3/2 n 1/2 vertices whose deletion creates a graph in which the total weight of every connected component is at most 1/2

A Separator Theorem for Graphs with an Excluded Minor and its Applications Main result An algorithm which finds, given an n-vertex graph G with weights as above and an h-vertex graph H, either such a set X or a minor of G isomorphic to H The algorithm runs in time O(h 1/2 n 1/2 m), where m is the number of edges of G plus the number of its vertices

A Separator Theorem for Graphs with an Excluded Minor and its Applications Motivation Extensions of the well-known theorem of Lipton and Tarjan for planar graphs Lipton-Tarjan separator theorem has many known applications, which can be extended now from the class of planar graphs to any class of graphs with an excluded minor

A Separator Theorem for Graphs with an Excluded Minor and its Applications Separation of graph A separation of a graph G=(V,E) is a pair (A,B) such as – A,B ⊆ V – A ∪ B = V – No edges between A – B and B – A The order of a separation is |A ∩ B|

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.1 (Lipton-Tarjan) Let G = (V,E) be a planar graph with n vertices, and let w : V → R + be a weight function. Then there is a separation (A,B) of G of order ≤ 2√2∙n 1/2, such that w(A - B), w(B - A) ≤ ⅔w(V )

A Separator Theorem for Graphs with an Excluded Minor and its Applications Minor of a graph A graph H is called a minor of a graph G if it can be obtained from a subgraph of G by a series of edge contractions edge contractions – removing the edge and combining its two endpoints

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lipton-Tarjan Theorem extension Kuratowski-Wagner Theorem asserts that planar graphs are those without K 5 or K 3,3 minors We now can extend Lipton-Tarjan theorem to graphs with an excluded minor

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.2 Let H be a simple graph with h ≥ 1 vertices, let G = (V, E) be a graph with n vertices, no H-minor and with a weight function w : V → R + Then there is a separation (A,B) of G of order ≤ h 3/2 n 1/2, such that w(A - B), w(B - A) ≤ ⅔w(V )

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.2 – Some notes Since K h contains every simple graph with h vertices it suffices to prove this theorem for the case H = K h We suspect that the estimate h 3/2 n 1/2 in this theorem can be replaced by O(h ∙ n 1/2 )

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.2 – X-flap For a graph G = (V,E) and X ⊆ V, an X-flap is the vertex set of some connected component of G \ X If X ⊆ V is such that w(F) ≤ ⅔w(V ) for every X-flap F then it is easy to find a separation (A,B) with A ∩ B = X such that w(A - B), w(B - A) ≤ ⅔w(V ) Thus, Theorem 1.2 is implied by the following

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition 1.3 Let G be a graph with n vertices and with no K h -minor and let w : V → R + be a weight function. Then there exists X ⊆ V with |X| ≤ h 3/2 n 1/2 such that w(F) ≤ ½w(V ) for every X-flap F

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.4 There is an algorithm which takes as input an integer h ≥ 1, a graph G = (V,E), and a function w : V → R + and output either 1. a K h -minor of G 2. A subset X ⊆ V with |X| ≤ h 3/2 n 1/2 such that w(F) ≤ ½w(V ) for every X-flap F

A Separator Theorem for Graphs with an Excluded Minor and its Applications Algorithm running time The algorithm running time is O(h 1/2 n 1/2 m), where n = V and m = V + E Unlike some other recent polynomial time algorithms involving graph minors this algorithm has no large constants hidden in the O notation above On the other hand it is not as efficient as the linear time one given by Lipton and Tarjan for the planar case.

A Separator Theorem for Graphs with an Excluded Minor and its Applications Haven of order A haven of order k in a graph G = (V,E) is a function β which assigns to each subset X ⊆ V with |X| ≤ k an X-flap β(X), in such a way that if X ⊆ Y then β(Y) ⊆ β(X) V X Y β(X) β(Y)

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition Haven of order In Proposition 1.3 we claim that for graph G with no K h -minor and a weight function: there exists X ⊆ V with |X| ≤ h 3/2 n 1/2 such that for every X-flap F, w(F) ≤ ½w(V ) So, if Proposition 1.3 is false then for each X ⊆ V with |X| ≤ h 3/2 n 1/2 there exists X-flap F such that w(F) > ½w(V)

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition Haven of order We now can define for each X ⊆ V with |X| ≤ h 3/2 n 1/2, β(X) to be that X-flap w(β(X)) > ½w(V) Clearly, β(Y) ⊆ β(X), because other connected component of G \ Y has weight less than ½w(V) So, β defined a haven of order h 3/2 n 1/2 X Y β(X)

A Separator Theorem for Graphs with an Excluded Minor and its Applications Theorem 1.5 Therefore, Proposition 1.3 is implied by the following more general and more compact result: Theorem 1.5 : Let h ≥ 1 be an integer, and let G be a graph with n vertices with a haven of order h 3/2 n 1/2. Then G has a K h -minor

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lemma 2.1 Let G = (V,E) be a graph with n vertices, let A 1,…, A k be k subsets of V, let r ≥ 1 be real number. Then either: 1. there is a tree T in G with |V(T)| ≤ r such that V(T) ∩ A i ≠ ∅ for i = 1,…,k 2. there exists Z ⊆ V with |Z| ≤ (k - 1)n/r, such that no Z-flap intersects all of A 1,…, A k

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proof – Some notations G 1,…,G k-1 - isomorphic copies of G For v ∈ V, v i is the corresponding vertex of G i J - the graph obtained from G 1 ∪ … ∪ G k-1 by adding an edge joining v i-1 and v i for all v ∈ A i G i-1 G i G i+1 Ai Ai+1

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proof – More notations X = { v 1 : v ∈ A 1 } and Y = { v k-1 : v ∈ A k } G 1 G k-1 Finally, for each u ∈ V(J), let d(u) be the number of vertices in the shortest path between X and u (or ∞ if there is no such path) There are two cases: A 1 =X A k =Y

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lemma 2.1 – Case 1 Case 1: d(u) ≤ r for some u ∈ Y Let P be a path in J between X and Y with less than r vertices Let S = { v ∈ V(G) : v i ∈ V(P) } Clearly, |S| ≤ |V(P)| ≤ r, the sub graph of G induced on S is a tree and S ∩ A i ≠ ∅ for i = 1,…,k

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lemma 2.1 – Case 2 Case 2: d(u) > r for all u ∈ Y Let t be the least integer with t ≥ r For 1 ≤ j ≤ t, let Z j = { u ∈ V(J) : d(u) = j } Since |V(J)| = (k - 1)n and Z 1,.., Z t are mutually disjoint, one of them, say Z j, has cardinality ≤ (k - 1)n/t ≤ (k - 1)n/r

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lemma 2.1 – Case 2 Clearly every path in J between X and Y has a vertex in Z j since d(u) ≥ j for all u ∈ Y Let Z = { v ∈ V(G) : v i ∈ Z j } |Z| ≤ |Z j | ≤ (k - 1)n/r Let us now show that Z satisfies the second option of the lemma

A Separator Theorem for Graphs with an Excluded Minor and its Applications Lemma 2.1 – Case 2 Suppose that F is a Z-flap intersects all of A 1,…,A k Let a i ∈ F ∩ Ai (1 ≤ i ≤ k), and P i be a path of G with V(P i ) ⊆ F and with ends a i,a i+1 Let P i be the path of G i corresponding to P i Then V(P 1 ) ∪ … ∪ V(P k-1 ) includes the vertex set of a path in J between X and Y, and yet is disjoint from Z j, a contradiction

A Separator Theorem for Graphs with an Excluded Minor and its Applications Applications Lipton and Tarjan and Rose gave many applications of the planar separator theorem (and noted that most of them would generalize to any family of graphs with small separators) Indeed our results supply simple generalizations of all these applications.

A Separator Theorem for Graphs with an Excluded Minor and its Applications Applications In particular it follows that for any fixed graph H, given a graph G with n vertices and with no H-minor one can approximate the size of the maximum independent set of G up to a relative error of 1/√(logn) in polynomial time. In time 2 O(√n) one can nd that size exactly and find the chromatic number of G

A Separator Theorem for Graphs with an Excluded Minor and its Applications Applications In general, All the applications of the Lipton- Tarjan planar separator theorem carry over, by our result, to any class of graphs with an excluded minor Let us see some of them

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition 4.1 Let G be an n-vertex graph with no K h -minor, and with nonnegative weights whose total sum is 1 assigned to its vertices. Then, for any 0 < ε ≤ 1 there is a set of at most O(h 3/2 n 1/2 / ε 1/2 ) vertices of G whose removal leaves G with no connected component whose total weight exceeds ε Such a set can be found in time O(h 1/2 n 1/2 m)

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition 4.1 This proposition can be used to obtain a polynomial time algorithm for approximating the size of the maximum independent set of a graph with an excluded minor

A Separator Theorem for Graphs with an Excluded Minor and its Applications Proposition 4.2 There is an algorithm that approximates, given an n-vertex graph G with no K h -minor, the size of a maximum independent set in it with a relative error of O(h 5/2 (logh) 1/2 / (logn) 1/2 ) in time O(h 1/2 n 1/2 m)