The ISM structure of low-metallicity star-forming dwarf galaxies Diane Cormier ITA, ZAH, University of Heidelberg – group of Frank Bigiel Suzanne Madden,

Slides:



Advertisements
Similar presentations
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Advertisements

The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
In the search for CO emission in young, low- metallicity spiral disks and dwarf galaxies: Prospects for ALMA Armando Gil de Paz (UCM), Kartik Sheth (Caltech/SSC),
Understanding Star Formation in Dwarf Galaxies: Step One Janice C. Lee (STScI) Lowell Observatory Dwarf Galaxy Workshop June 19, 2012 twanight.org?id=
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Submillimeter and IR Studies of Molecular Regions in the Magellanic Clouds Mónica Rubio Universidad de Chile CCAT Workshop, Koln, 5oct11.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
Determining the dynamics of the ultracompact HII region (UCHII) Monoceros R2 A. Fuente Observatorio Astronómico Nacional (OAN)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT Gordon Stacey Thomas Nikola, Carl Ferkinhoff, Drew Brisbin, Steve Hailey-Dunsheath,
The shapes of the THINGS HI profiles Presented by : Ianjamasimanana Roger Supervisor : Erwin de Blok UNIVERSITY OF CAPE TOWN.
Star formation at intermediate scales: HII regions and Super-Star Clusters M. Sauvage, A. Contursi, L. Vanzi, S. Plante, T. X. Thuan, S. Madden.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Cosmic Rays: Gas Phase Astrophysics and Astrochemistry Marco Spaans (Groningen) Rowin Meijerink (Leiden), Edo Loenen (Leiden), Paul van der Werf (Leiden),
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Jet Propulsion Laboratory
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
 SPIRE/PACS guaranteed time programme.  Parallel Mode Observations at 100, 160, 250, 350 and 500µm simultaneously.  Each.
Star Formation and H2 in Damped Lya Clouds
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Herschel View of the Warm Molecular Gas in the LMC Star-forming region N159W Min-Young Lee CEA-Saclay, France Collaborators S. Madden, V. Lebouteiller,
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
Distribution of Phases of the ISM - and how to see them
Ay126: Fine Structure Line Emission from the Galaxy
Excitation of H2 in NGC 253 Marissa Rosenberg
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Presentation transcript:

The ISM structure of low-metallicity star-forming dwarf galaxies Diane Cormier ITA, ZAH, University of Heidelberg – group of Frank Bigiel Suzanne Madden, Vianney Lebouteiller, Sacha Hony, Frédéric Galliano, Aurélie Remy, Ronin Wu, Marc Sauvage (CEA Saclay, Paris) Nick Abel (U. Cincinnati) Maud Galametz (IoA, Cambridge) Ilse de Looze (U. Gent) Albrecht Poglitsch (MPE, Garching)

★ Star formation is well-correlated with molecular gas in normal galaxies (e.g. Bigiel et al. 2008) Most dwarf galaxies are H I dominated with little CO detected, despite evident SF episodes (e.g. Taylor et al. 1998, Leroy et al. 2005, Schruba et al. 2012) Kennicutt et al How can the FIR lines, combined with CO, help understand the ISM structure of dwarf galaxies? Puzzles around star formation in low-metallicity dwarf galaxies ★ Strong UV fields + low-metallicity => CO photodissociation (S. Madden review talk) H 2 can self-shield in CO-free envelopes of clouds = CO-dark gas (Grenier et al. 2005, Wolfire et al. 2010) Observational evidence of CO-dark gas in low-metallicity galaxies (e.g., Poglitsch et al. 1995; Israel et al. 1997; Madden 2000; Leroy et al. 2007) ★ The atomic gas starts to play a role in SF at (very) low metallicities (e.g. Krumholz 2011, Glover & Clark 2012)  What are the true cloud/phases distributions?  What is the total molecular gas reservoir?  What is the role of the different gas reservoirs in the SF process?

11.3 eV 14.5 eV 35.1 eV 29.6 eV Why are the FIR lines important?  Major coolants of the ISM  PDR lines trace closely the star formation [CII] 157μm is the brightest line in most SF galaxies (alone carries 1% of the FIR luminosity, e.g., Brauher et al. 2008) Prime target in high-z galaxies with ALMA Where do the FIR lines come from? Depends on the medium conditions (essentially ionisation, temperature, density)  C + is an important coolant of the: WIM, WNM, CNM, PDR  O 0 is a main coolant of the: PDR  N +, N ++, O ++ are coolants of the: H II region, WIM 3 C + / C 0 / CO layers (Wolfire et al. 2010) H I CII OI CI H 2 CII OI A V ≈0.3 A V ≈1 CO, H 2 The FIR cooling lines

The Herschel Dwarf Galaxy Survey ( Madden et al ) HS1442 UGC4483 ZZ d 1” 100kpc 1Mpc10Mpc 100Mpc MW SMC IC10 N6822 N4214 N1140 N625 N1705 N2366 N1569 IIZw40 N5253 N4449 He2-10 Haro3 Haro2 Haro11 N4861 IZw18 Tol1214 VIIZw403 UM448 UM461 UM311 UM133 Pox186 SBS0335 Mrk1450 Mrk153 Mrk930 Mrk209 Mrk1089 SBS1249 SBS1415 SBS1211 SBS1533 SBS log sSFR [yr -1 ] HS1236 HS1222 HS0017 HS0822 HS0052 HS2352 HS1304 HS1330 HS1319 LMC M pc 4.8pc 48pc 480pc Sample: 50 galaxies

12” IIZw40 12 Mpc, 1/5 Z , SFR ≈ 0.4 M .yr -1 NGC Mpc, 1/3 Z , SFR ≈ 0.3 M .yr Doradus 48 kpc, 1/2 Z , SFR ≈ 0.01 M .yr -1 12” = 700 pc 250 pc 3 pc (Karczewski et al. 2013) C+ detected down to Z≈1/50 Z  (IZw18, SBS ) C+ emission bright and extended (e.g. in N11: Lebouteiller et al. 2012) Herschel/PACS info: [C II ], [O I ]63 and [O III ] in all galaxies, [N II ], [N III ], and [O I ]145 in few FOV ≈ 47”--Spatial resolution ≈ ”--Spectral resolution ≈ km s -1 Herschel /PACS [C II ] 157 μ m maps

[O I ]/[C II ] ratios are average  non-uniform properties High [O III ]/[C II ] ratios  effect of hard UV photons on large spatial scales Low [N II ] 122μm fluxes  high-excitation gas dominant Brauher et al High-excitation fraction Low-excitation fraction Classical PDR tracers n H, G 0 Line ratios and L TIR correlations

[O I ]/[C II ] ratios are average  non-uniform properties High [O III ]/[C II ] ratios  effect of hard UV photons on large spatial scales Low [N II ] 122μm fluxes  high-excitation gas dominant Brauher et al See also Hunter et al Line ratios and L TIR correlations Classical PDR tracers Low-excitation fraction High-excitation fraction

[O I ]/[C II ] ratios are average  non-uniform properties High [O III ]/[C II ] ratios  effect of hard UV photons on large spatial scales Low [N II ] 122μm fluxes  high-excitation gas dominant Brauher et al Line ratios and L TIR correlations High-excitation fraction Classical PDR tracers Low-excitation fraction [C II ] fraction from ionised gas

C II /CO(1-0) traces the star formation activity in galaxies High CII/CO(1-0) ratios observed on average in star-forming dwarf galaxies CII/CO is a strong function of Av CO is detected in few dwarf galaxies and faint compared to their SF activity CO not detected to metallicities lower than ≈ 1/5 Z   (with the exception of WLM, Elmegreen et al ) Madden 2000 Hailey-Dunsheath et al Stacey et al Madden et al. 2013, in prep. Metallicity and the [C II ]/CO ratio

HII regions and PDR model Cloudy (Ferland et al. 2013, Abel et al. 2005) Basic model nHnH starburst r in HII region PDR Molecular phase Cloudy modeling (work with Nick Abel) Z ≈ 1/10 Z  SMC-type grains Grid varying: n H, U, A V Focus on: C II /FIR, C II /CO, and O III /C II

Ionisation parameter: log U = -4 log U = -3 log U = -2  log U = -1 Cloudy modeling (work with Nick Abel): C II /FIR vs. O III /C II HII PDR  Need for an escaping low density ionised phase Combined with a low covering factor PDR

Effect of cosmic rays: CO suppressed in favor of more ions Tracers: H3+, but OH+ and H 2 O => difficult to observe Ionisation parameter: log U = -4 log U = -3 log U = -2  log U = -1 CR rate n H Cloudy modeling (work with Nick Abel) : C II /CO(1-0) vs. O III /C II Madden et al. 2013, in prep.

HST image of Haro11 L IR = L  84 Mpc away Z = 0.3 Z  3 main star-forming regions ~60 SSCs, hundreds of young (<3Myrs) clusters SFR = 22 M  yr -1 Unresolved in Spitzer and Herschel bands Only upper limits on H I 21-cm and CO(1-0) Bergvall et al kpc or 5” Bright MIR and FIR cooling lines Detected in CO(2-1) and CO(3-2) Cormier et al. 2012, Cormier et al (submitted) O III /C II ≈ 2.5 C II /O I ≈ 1 C II /CO > C II /TIR ≈ 0.1 % Haro11: observations

(eV) Multi-phase ISM: Search for 3 main phases 1. Compact HII region 2. Diffuse gas 3. Dense PDR Spitzer Herschel Haro11: Cloudy modeling Kennicutt et al. 2011

Dense HII region PDR/Molecular cloud Diffuse medium – low ionisation Compact H II region: n H = 10 3 cm -3, A burst = 4 Myr Dense PDR model: n H = 10 5 cm -3, G 0 = 10 3 Habing Diffuse medium: n H = 10 cm -3, T eff = K Haro11: The multiphase picture Phase histogram

16 Herschel brings a new view on the ISM of dwarf galaxies FIR lines enhanced on galaxy-wide scales. Leaky structure with high filling fraction of diffuse gas where UV photons permeate ([O III ], [N II ]), and dense clumpy PDRs ([O I ]). Multi-phase modeling to retrieve structural information 3 model components: H II region, fragmented PDR, diffuse gas Importance of the ionised gas and diffuse medium, in particular when using [C II] as a PDR tracer in unresolved objects Elusive molecular gas in dwarf galaxies CO difficult to detect due to clumpiness: need ALMA Quantifying the molecular gas mass is uncertain The dark-gas fraction can be accessed through models Other tracers to be calibrated (e.g. velocity-resolved C II with SOFIA, C I, HCO+, HCN with APEX) Summary H I C II O I CIH2CIH2 N III, O III Ne III, S IV CO, H 2 HCO+, HCN H I C II O I CIH2CIH2 N III, O III Ne III, S IV CO H 2 HCO+, HCN

THE END

II. The Herschel view of star-forming dwarf galaxies: heating/cooling balance Measure of and proxy for photoelectric efficiency Line cooling enhanced on galaxy-wide scales  Higher PE efficiency? from higher small grain abundance and UV field dilution  C+ emission contaminated by WIM/CNM with other excitation mechanisms at play? large fraction from diffuse regions on galaxy scale FIR line deficit: dust screening, grain charging (Luhman et al. 2003, Gracia-Carpio et al. 2011, Croxall et al. 2012) (P.I. J. Davies) (P.I. E. Sturm) (P.I. D. Farrah)

Low-excitation fraction [O I ]/[C II ] ratios are average  non-uniform properties Narrow [O I ]145/63 ratios  optical depth effects High [O III ]/[C II ] ratios  effect of hard UV photons on large spatial scales Low [N II ] 122μm fluxes  high-excitation gas dominant Brauher et al Classical PDR tracers Optical depth effects High-excitation fraction n H, G 0 Line ratios and L TIR correlations

OIII 88 μ mNIII 57 μ m NII 122 μ m NII 205 μ m Ionized gas [N II] 122μm [N II] 205μm [N III] 57μm [O III] 88μm CII 157 μ m OI 63 μ m OI 145 μ m Atomic gas [C II] 158μm [O I] 63μm [O I] 145μm Herschel/PACS Ionized gas [Ne III] 15μm [Ne II] 12μm [S IV] 10μm [S III] 33μm [S III] 18μm Spitzer/IRS O III /C II ≈ 2.5 III. Tools to interpret the observations: observations

III. Tools to interpret the observations: PDR Toolbox 22 Pound & Wolfire 2008 Kaufman et al If less [CII] from PDR Density: cm -3 G 0 : around 10 2 Habing  Average cloud conditions

II. The cold ISM probed by CO: Schmidt-Kennicutt law Kennicutt et al Most dwarf galaxies H I dominated Possible large fraction of dark gas to be calibrated  What is the role of the different gas reservoirs in the SF process?  What are the true source sizes and distribution?

HIHI Xco scaled to Z H II Galactic Xco Xco scaled to Z Warm H 2 PDR => α CO = M(H 2 )/Ico = 45 ObservationsModels Haro11: The Schmidt-Kennicutt diagram

The Herschel Dwarf Galaxy Survey ( Madden et al ) ZZ d 1” 100kpc 1Mpc10Mpc 100Mpc MW SMC IC10 N6822 N4214 N1140 N625 N1705 N2366 N1569 IIZw40 N5253 N4449 He2-10 Haro3 Haro2 Haro11 N4861 IZw18 Tol1214 VIIZw403 UM448 UM461 UM311 UM133 Pox186 SBS0335 Mrk1450 Mrk153 Mrk930 Mrk209 Mrk1089 SBS1249 SBS1415 SBS1211 SBS1533 SBS1159 < < SFR [M  yr -1 ] HS1236 HS1222 HS0017 HS0822 HS0052 HS2352 HS1304 HS1442 HS1330 HS1319 LMC M33 UGC4483