Nov. 3-5, 2003Takahashi - Active Control of MHD1 Using Actively Driven SOL Current for Controlling Vertical Instability and Other MHD Modes in Tokamaks.

Slides:



Advertisements
Similar presentations
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Advertisements

Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
November 3-5, 2003Feedback Workshop, Austin NORMAL MODE APPROACH TO MODELING OF FEEDBACK STABILIZATION OF THE RESISTIVE WALL MODE By M.S. Chu(GA), M.S.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Halo Current and Resistive Wall Simulations of ITER H.R. Strauss 1, Linjin Zheng 2, M. Kotschenreuther 2, W.Park 3, S. Jardin 3, J. Breslau 3, A.Pletzer.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
YQ Liu, Peking University, Feb 16-20, 2009 Active Control of RWM Yueqiang Liu UKAEA Culham Science Centre Abingdon, Oxon OX14 3DB, UK.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Dec. 12, 2008Takahashi MHD SFG Mtg1 Scrape-Off-Layer Current (SOLC) Study in NSTX Hiro Takahashi MHD Science Focus Group Meeting Princeton Plasma Physics.
Physics of fusion power Lecture 8: Conserved quantities / mirror / tokamak.
Physics of fusion power
Physics of fusion power Lecture 8 : The tokamak continued.
Physics of Fusion power Lecture 7: Stellarator / Tokamak.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
9/20/04NSTX RESULTS REVIEW NSTX rtEFIT implementation progress results NSTX 2004 RESULTS REVIEW September 20&21, 2004 REAL-TIME EQUILIBRIUM RECONSTRUCTION.
Recent Results from the STOR-M Tokamak A.Hirose, M. Dreval, S. Elgriw, O. Mitarai(1), A. Pant, M. Peng(2), D. Rohraff, A.K. Singh(3), D. Trembach, C. Xiao.
1 Model of filaments in plasma Nobuhiro Nishino Graduate school of Engineering Hiroshima University 3rd IAEA TM and 11th IWS on ST Place: St.Petersburg.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
12/03/2013, Praga 1 Plasma MHD Activity Observations via Magnetics Diagnostics: Magnetic island Analysis Magnetic island Analysis Frederik Ostyn (UGent)
Rotation effects in MGI rapid shutdown simulations V.A. Izzo, P.B. Parks, D. Shiraki, N. Eidietis, E. Hollmann, N. Commaux TSD Workshop 2015 Princeton,
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
1 Off-axis Fishbones in DIII-D Bill Heidbrink Leaders of the Experiment G. Matsunaga, M. Okabayashi Energetic Particle Working Group R. Fisher, R. Moyer,
Recent experiments in the STOR-M Tokamak* Akira Hirose In collaboration with: C. Boucher (INRS-EMT), G. St. Germaine D. Liu, S. Livingstone, A. Singh,
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
Physics of fusion power Lecture 9 : The tokamak continued.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
Workshop on MHD Control 2008 – O.Katsuro-Hopkins Computational analysis of advanced control methods applied to RWM control in tokamaks Oksana N. Katsuro-Hopkins.
Investigation of fast ion mode spatial structure in NSTX N.A. Crocker, S. Kubota, W.A. Peebles (UCLA); E.D. Fredrickson, N.N. Gorelenkov, G.J. Kramer,
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Compact Stellarator Approach to DEMO J.F. Lyon for the US stellarator community FESAC Subcommittee Aug. 7, 2007.
EJD IAEA H-mode WS,, September 28, Overview Introduction — steady-state performance requirements -Global DIII-D and NSTX progress Plasma control.
ITPA Topical Group on MHD, Control, and Disruptions Summary of 5th meeting, Nov. 8-10, 2004 Presented by Ted Strait Workshop on MHD Mode Control Princeton,
Hiroshi Tojo, IAEA TM/ISTW2008, Frascati, Italy, October 2008 Features of High Frequency Mode during Internal Reconnection Events on MAST Graduate School.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
L. Zanotto – 10 February 2011 – RFX-mod programme workshop TF2: Active control of RFP and tokamak plasmas Report on experimental proposals L. Zanotto,
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
ASIPP Magnetic Diagnostics of HT-7U Tokamak Shen Biao Wan Baonian Institute of Plasma Physics, CAS P.O.Box 1126, Hefei, Anhui , P.R.China (e_mail:
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
Plasma MHD Activity Observations via Magnetic Diagnostics Magnetic islands, statistical methods, magnetic diagnostics, tokamak operation.
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
March 15-18, 2011Tak NSTX Forum '11-'121 H. Takahashi, E. Fredrickson, S. Gerhardt, I. Joseph, R. Kaita, R. Maingi, S. Sabbagh, and S. Zweben NSTX Research.
NSTX SAS – GMS Mtg. 12/1/04 S. A. Sabbagh and J. E. Menard NSTX RWM Active Feedback System Implementation Plan Discussion NSTX Global Mode Stabilization.
51st Annual Meeting of the Division of Plasma Physics, November 2 - 6, 2009, Atlanta, Georgia ∆I BS = 170 Amps J BS e-root J BS i-root Multiple ambipolar.
DIII-D 3D edge physics capabilities: modeling, experiments and physics validation Presented by T.E. Evans 1 I. Joseph 2, R.A. Moyer 2, M.J. Schaffer 1,
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
Evolution of the poloidal Alfven waves in 3D dipole geometry Jiwon Choi and Dong-Hun Lee School of Space Research, Kyung Hee University 5 th East-Asia.
T. Markovič1,2, P. Cahyna1, R. Panek1, M. Peterka1,2, P. C
J. Menard for the MHD Science Focus Group Tuesday, November 22, 2005
Presentation transcript:

Nov. 3-5, 2003Takahashi - Active Control of MHD1 Using Actively Driven SOL Current for Controlling Vertical Instability and Other MHD Modes in Tokamaks H. Takahashi and E.D. Fredrickson Princeton University Workshop on Active Control of MHD Stability: Extension to the Burning Plasma Regime November 3 - 5, 2003 University of Texas Austin, TX - Bringing back Old Ideas into a New Environment -

Nov. 3-5, 2003Takahashi - Active Control of MHD2 Can ITER/Reactor Design Be Improved? ITER and reactors will have large control coils far from plasma. Control coils far from plasma are inefficient. –Multipole fields decay fast with distance. –Coil power supplies need high current, large bandwidth. –Inductive heating of cryogenic assembly requires additional cooling. There is, perhaps, room for innovation here… –Closer feedback circuit would be more efficient.

Nov. 3-5, 2003Takahashi - Active Control of MHD3 Using Scrape-Off-Layer Current (SOLC) for: (1)MHD stability (2)Confinement improvement (3)H-mode power threshold reduction (4)Other worthy causes is an old (and good) idea*. *See, e.g., “Workshop for Feedback Stabilization of MHD Instabilities (1996)” (K. M. McGuire, et al., NF 37(1997) ): But it has rarely been carried out in major facilities.

Nov. 3-5, 2003Takahashi - Active Control of MHD4 Electrodes Previously Proposed to Drive SOLC (1) S.C. Jardin and J.A. Schmidt, “Numerical Simulation of Feedback Stabilization of Axisymmetric Modes in Tokamaks Using Driven Halo Current,” NF 38(1998) (2) R. Goldston, “Toroidally Segmented Divertor Biasing and Current Injection,” Plasma Phys. and Controlled Fusion. (3) H.W. Kugel, et al., “Feedback Stabilitzation Experiment for MHD Control with Edge Current,” SOFE Vertical Control Toroidally Segmented Divertor Biasing Ref. (1)Ref. (2-3) n = 0 n > 0

Nov. 3-5, 2003Takahashi - Active Control of MHD5 What New Environment? (1)Increased knowledge of SOLC (2)More urgent need for MHD control: future has drawn closer. (3)Opportunities for carrying out active SOLC control experiment in high betaN tokamaks: DIII-D, NSTX, MAST, AUG, … (4)Extensive and expanding MHD feedback programs exist or planned. (5)Opportunities to make contributions to ITER.

Nov. 3-5, 2003Takahashi - Active Control of MHD6 What Increased Knowledge of SOLC? Measurement SOLC in DIII-D, TCA - presence of large intrinsic current during MHD Experience with Driven “SOLC” in NSTX (helicity injection) Measurement of SOL properties in DIII-D, MAST, AUG, TCA, … Some example measurements in DIII-D follow…

Nov. 3-5, 2003Takahashi - Active Control of MHD7 B-field Signal Pollution Feedback Control Tokamak Operation Equilibrium Reconstruction ? Potential Effects of Error Field Generated by SOLC SOLC Intrinsic or Driven Resonant B-field Normal to Flux Surfaces Flux Surface Distortion MHD Stability ? ? MHD Control

Nov. 3-5, 2003Takahashi - Active Control of MHD8 SOLC Flows Just Outside Separatrix The origin of the SOLC* is not yet fully understood - not a subject of this talk. *See, e.g., discussion by M. Schaffer and B. Leikind, NF 31(1991)1750. Topology of SOLC path can change for small shift in location (compare red and blue curves on the right). Line Current Model The simplest model SOLC flows along an open field line and closes its circuit through the tokamak structure.

Nov. 3-5, 2003Takahashi - Active Control of MHD9 SOLC Generates Helical Field Pattern B-field Normal to q=3 Surface Produced by SOLC

Nov. 3-5, 2003Takahashi - Active Control of MHD10 RWM Produces Helical Field Pattern *From M. Okabayashi, et al. Poloidal angle External coils try to emulate RWM field pattern. Why not match helical with helical using SOLC? B-field Normal to Plasma Surface Produced by RWM*

Nov. 3-5, 2003Takahashi - Active Control of MHD11 Control with Different Current Path Topologies Secondary feedback loop keeps SOLC in a desired toroidal distribution by applying control through toroidally segmented electrodes. Vertical Control (n = 0)MHD Control (n > 0)

Nov. 3-5, 2003Takahashi - Active Control of MHD12 DIII-D Has Sensor Arrays for Measuring Current through Divertor Tiles Bottom Divertor Top Divertor A narrow SOL current channel may escape detection, because less than 10 % of tiles in only selected tile-rings have sensors. Each of shaded divertor tiles is instrumented with a resistive-element current sensor (tile representation merely schematic). *Schaffer, et al., Poster 3Q21, APS-DPP, 1996, Denver, CO, Nov

Nov. 3-5, 2003Takahashi - Active Control of MHD13 SOLC Spikes Accompany ELMs… Inner and outer divertor tile rings are connected via open field lines without obstruction in-between. Notion that SOLC flows along open field lines is generally borne out, though not always in quantitative details. SOLC spikes can be an indicator of ELMs. outer strike point inner strike point Discharge Summary Positive signal means current flowing from plasma into tile. Tile Current D  Light

Nov. 3-5, 2003Takahashi - Active Control of MHD14 SOL Current Can Be Oscillating… SOLC (bi-polar) Mirnov (B-dot) 4.9kHz 6.5mTp-p Discharge Summary SOLC Mirnov

Nov. 3-5, 2003Takahashi - Active Control of MHD15 SOL Current Can be Large, Non-axisymmetric… Over 800 A thru one tile Peak current does not always occur at the same toroidal location. Large SOL current may be non- linearly coupled with Ip evolution caused by thermal collapse. tile at 0 deg tile at 150 deg Discharge Summary

Nov. 3-5, 2003Takahashi - Active Control of MHD16 SOLC Spreads Radially Far during ELM Re-circulating current flows from (probably) top (ring #11A) to bottom (#11B) in near SOL and from bottom (#12B) to top ( #12A) in far SOL. Some current in very far SOL also. Nearly 400 A flowed through a single tile during a large ELM. Discharge Summary N/A SOLC over Wide Radial Region During an ELM SOLC was spread over at least 21 cm, possibly 36 cm, beyond bottom outboard strike point (at least 5 cm when measured in outboard mid-plane). 1 cm spacing Wall at 6 cm SOLC fills space between plasma and wall during ELM, and reverses its direction, possibly twice. Top Divertor Mid-plane Bot Divertor

Nov. 3-5, 2003Takahashi - Active Control of MHD17 SOLC Has Complex Radial Structure during ELM Discharge Summary Waveforms are different on adjacent rings. Temporal and spatial structures of SOLC are complex during an ELM. SOLC in adjacent tile rings during a single ELM in expanded time scale Radial Sensor Array Tor/Rad Width=7.5deg/7.1cm Tor/Rad Width=7.5deg/13.9cm Tor/Rad Width=5.0deg/14.3cm Ring #11B Ring #12B Ring #13B

Nov. 3-5, 2003Takahashi - Active Control of MHD18 Staged Experiment Stage-I: Install toroidally segmented electrodes with leads having “on/off” switching capability for grounding. (a)Effect of cutting-off SOLC on MHD activity, including RWM, ELM, NTM, and LM - use on/off switching capability to establish causality. Stage-IIa: Add power supplies. (a)How much current can be driven? (b)Can SOLC-generated error field affect MHD? (c)Can SOLC rotate plasma through “entraining?” (d)Do driven and intrinsic SOLC interact? Configure a multi-staged experiment whose ultimate goals are to actively exploit SOLC for controlling vertical instability and other non-axisymmetric MHD modes.

Nov. 3-5, 2003Takahashi - Active Control of MHD19 Staged Experiment-Cont. Stage-III: Install primary feedback based on magnetic (or other position sensor) signals for vertical position control. (a)Demonstrate feedback control of vertical positional instability. Stage-VI: Install primary feedback based on magnetic sensor signals for non-axisymmetric MHD modes. (a)Demonstrate feedback control of non-axisymmetric MHD modes. Stage-IIb: Add secondary feedback based on current sensor signals. (a)Develop technique to maintain desired toroidal SOLC distribution. (b)Examine effect of symmetrized SOLC on MHD activity. (c)Examine effect of non-axisymmetric SOLC on MHD activity.

Nov. 3-5, 2003Takahashi - Active Control of MHD20 Summary The use of actively driven SOL current (SOLC) was considered with the following goals in mind: I.To develop efficient techniques for controlling vertical instability and other low-frequency MHD modes in ITER. II.To offer, through a staged experiment, opportunities to answer a number of physics questions about SOLC: (a)Effect of cutting-off SOLC on MHD activity, including RWM, ELM, NTM, and LM. (b)Interaction of intrinsic and driven SOLC. (c)Effect of symmetrized SOLC on MHD activity. (d)Effect of non-axisymmetric SOLC on MHD activity.