INTRODUÇÃO AOS SISTEMAS INTELIGENTES

Slides:



Advertisements
Similar presentations
Artificial Intelligent
Advertisements

Search Search plays a key role in many parts of AI. These algorithms provide the conceptual backbone of almost every approach to the systematic exploration.
Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
Additional Topics ARTIFICIAL INTELLIGENCE
Review: Search problem formulation
Announcements Course TA: Danny Kumar
Uninformed search strategies
Solving problems by searching Chapter 3 Artificial Intelligent Team Teaching AI (created by Dewi Liliana) PTIIK 2012.
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
Artificial Intelligence Solving problems by searching
Artificial Intelligence Problem Solving Eriq Muhammad Adams
CS 480 Lec 3 Sept 11, 09 Goals: Chapter 3 (uninformed search) project # 1 and # 2 Chapter 4 (heuristic search)
Blind Search1 Solving problems by searching Chapter 3.
Search Strategies Reading: Russell’s Chapter 3 1.
May 12, 2013Problem Solving - Search Symbolic AI: Problem Solving E. Trentin, DIISM.
1 Chapter 3 Solving Problems by Searching. 2 Outline Problem-solving agentsProblem-solving agents Problem typesProblem types Problem formulationProblem.
Solving Problem by Searching Chapter 3. Outline Problem-solving agents Problem formulation Example problems Basic search algorithms – blind search Heuristic.
PSU CS 370 – Artificial Intelligence Dr. Mohamed Tounsi Artificial Intelligence 3. Solving Problems By Searching.
Search Search plays a key role in many parts of AI. These algorithms provide the conceptual backbone of almost every approach to the systematic exploration.
Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
Touring problems Start from Arad, visit each city at least once. What is the state-space formulation? Start from Arad, visit each city exactly once. What.
Artificial Intelligence for Games Uninformed search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
EIE426-AICV 1 Blind and Informed Search Methods Filename: eie426-search-methods-0809.ppt.
UNINFORMED SEARCH Problem - solving agents Example : Romania  On holiday in Romania ; currently in Arad.  Flight leaves tomorrow from Bucharest.
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
CHAPTER 3 CMPT Blind Search 1 Search and Sequential Action.
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
CS 380: Artificial Intelligence Lecture #3 William Regli.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
Solving problems by searching
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
Solving problems by searching This Lecture Read Chapters 3.1 to 3.4 Next Lecture Read Chapter 3.5 to 3.7 (Please read lecture topic material before and.
Review: Search problem formulation Initial state Actions Transition model Goal state (or goal test) Path cost What is the optimal solution? What is the.
1 Solving problems by searching This Lecture Chapters 3.1 to 3.4 Next Lecture Chapter 3.5 to 3.7 (Please read lecture topic material before and after each.
AI in game (II) 권태경 Fall, outline Problem-solving agent Search.
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Prof. Carla P. Gomes Module: Search I (Reading R&N: Chapter.
1 Solving problems by searching 171, Class 2 Chapter 3.
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
SOLVING PROBLEMS BY SEARCHING Chapter 3 August 2008 Blind Search 1.
A General Introduction to Artificial Intelligence.
Problem Solving Agents
Solving problems by searching 1. Outline Problem formulation Example problems Basic search algorithms 2.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 3 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
1 search CS 331/531 Dr M M Awais REPRESENTATION METHODS Represent the information: Animals are generally divided into birds and mammals. Birds are further.
Pengantar Kecerdasan Buatan
Problem Solving as Search. Problem Types Deterministic, fully observable  single-state problem Non-observable  conformant problem Nondeterministic and/or.
Problem Solving by Searching
Solving problems by searching A I C h a p t e r 3.
1 Solving problems by searching Chapter 3. 2 Outline Problem types Example problems Assumptions in Basic Search State Implementation Tree search Example.
WEEK 5 LECTURE -A- 23/02/2012 lec 5a CSC 102 by Asma Tabouk Introduction 1 CSC AI Basic Search Strategies.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Artificial Intelligence Solving problems by searching.
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Problem Solving as Search
Problem solving and search
Artificial Intelligence
Solving problems by searching
Solving problems by searching
Lecture 1B: Search.
Artificial Intelligence
Solving problems by searching
Solving problems by searching
Solving problems by searching
Solving Problems by Searching
Solving problems by searching
Presentation transcript:

INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011

PROBLEMAS E BUSCA

Problemas Caracterização de um problema: Outros elementos: Espaço de estados; Estado inicial; Estado(s) final(is); Operadores de mudança de estado. Outros elementos: Função sucessora e função teste de sucesso; Custos… Solução: caminho percorrido, estado final. Problemas e Instâncias.

Problema do aspirador Descrição: Aspirador, Sujeira, Quarto. Operadores: Sugar, Direita, Esquerda.

Problema do aspirador Single-state, start in #5. Solution? [Right, Suck] Sensorless, start in {1,2,3,4,5,6,7,8} e.g., Right goes to {2,4,6,8} Solution? [Right,Suck,Left,Suck]

Problema do aspirador [Right, if dirt then Suck] Contingency Nondeterministic: Suck may dirty a clean carpet Partially observable: location, dirt at current location. Percept: [L, Clean], i.e., start in #5 or #7 Solution? [Right, if dirt then Suck]

Problema do aspirador

Agentes para solução de problemas

Exemplo: busca em espaço de estados On holiday in Romania; currently in Arad. Formulate goal: be in Bucharest Formulate problem: states: various cities actions: drive between cities Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Exemplo: busca em espaço de estados

Exemplo: busca em espaço de estados A problem is defined by the items: initial state e.g., "at Arad" actions or successor function S(x) = set of action–state pairs e.g., S(Arad) = {<Arad  Zerind, Zerind>, … } goal test, can be explicit, e.g., x = "at Bucharest" implicit, e.g., Checkmate(x) path cost (additive) e.g., sum of distances, number of actions executed, etc. c(x,a,y) is the step cost, assumed to be ≥ 0 A solution is a sequence of actions leading from the initial state to a goal state.

Exemplo: busca em espaço de estados Real world is absurdly complex  state space must be abstracted for problem solving (Abstract) state = set of real states (Abstract) action = complex combination of real actions e.g., "Arad  Zerind" represents a complex set of possible routes, detours, rest stops, etc. For guaranteed realizability, any real state "in Arad“ must get to some real state "in Zerind" (Abstract) solution = set of real paths that are solutions in the real world Each abstract action should be "easier" than the original problem.

Tipos de problemas Deterministic, fully observable  single-state problem Agent knows exactly which state it will be in; solution is a sequence Non-observable  sensorless problem (conformant problem) Agent may have no idea where it is; solution is a sequence Nondeterministic and/or partially observable  contingency problem percepts provide new information about current state often interleave {search, execution} Unknown state space  exploration problem

Exemplo: 8-puzzle Estados ? Ações ? Teste de sucesso ? Custo do caminho ?

Exemplo: montagem por robô states?: real-valued coordinates of robot joint angles parts of the object to be assembled actions?: continuous motions of robot joints goal test?: complete assembly path cost?: time to execute

BUSCA NÃO INFORMADA

Algoritmos de busca em árvore Basic idea: offline, simulated exploration of state space by generating successors of already-explored states (also known as expanding states).

Algoritmos de busca em árvore

Implementação da busca em árvore

Busca em espaço de estados A state is a (representation of) a physical configuration; A node is a data structure constituting part of a search tree includes state, parent node, action, path cost g(x), depth; The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Busca em espaço de estados A search strategy is defined by picking the order of node expansion Strategies are evaluated along the following dimensions: completeness: does it always find a solution if one exists? time complexity: number of nodes generated space complexity: maximum number of nodes in memory optimality: does it always find a least-cost solution? Time and space complexity are measured in terms of b: maximum branching factor of the search tree d: depth of the least-cost solution m: maximum depth of the state space (may be ∞)

Estratégias de busca sem informação Uninformed search strategies use only the information available in the problem definition Breadth-first search (largura) Uniform-cost search (custo uniforme) Depth-first search (profundidade) Depth-limited search (profundidade limitada) Iterative deepening search (busca iterativa em aprofundamento)

Busca em largura Implementation: fringe is a FIFO queue, i.e., new successors go at end

Busca em largura

Busca em largura

Busca em largura: propriedades Complete? Yes (if b is finite) Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1) Space? O(bd+1) (keeps every node in memory) Optimal? Yes (if cost = 1 per step) Space is the bigger problem (more than time)

Busca custo uniforme Expand least-cost unexpanded node Implementation: fringe = queue ordered by path cost Equivalent to breadth-first if step costs all equal Complete? Yes, if step cost ≥ ε Time? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ ε)) where C* is the cost of the optimal solution Space? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ ε)) Optimal? Yes – nodes expanded in increasing order of g(n)

Busca em profundidade Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade

Busca em profundidade: propriedades Complete? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path  complete in finite spaces Time? O(bm): terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first Space? O(bm), i.e., linear space! Optimal? No

Busca em profundidade limitada Recursive implementation:

Busca iterativa em aprofundamento

Busca iterativa em aprofundamento =3

Busca iterativa em aprofundamento: propriedades Complete? Yes Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd) Space? O(bd) Optimal? Yes, if step cost = 1

Sumário das estratégias

Alerta ! Failure to detect repeated states can turn a linear problem into an exponential one!

Busca em grafo

Exemplos de busca Exemplos de diferentes estratégias de busca; Programas em Lisp (C, Python…)