Myeon-Gyu Jeong, James R. Morrison and Hyowon Suh ISysE, KAIST Recent Directions Toward Automated Life Cycle Assessment.

Slides:



Advertisements
Similar presentations
Applications of one-class classification
Advertisements

Ralf Becker United Nations Statistics Division
School of Civil and Building Services Engineering
Energy Management– Life cycle and energy in Transports 2 st semester 2013/2014 Carla Silva Principal.
Mahmut Ali GÖKÇEIndustrial Systems Engineering Lecture 2 System Identification ISE102 Spring 2007.
Clustering Basic Concepts and Algorithms
1 FUNCTION MODELING USING IDEF-0 IE 590 INTEGRATED MANUFACTURING SYSTEMS Lecture 7.
Welcome to the Life Cycle Assessment (LCA) Learning Module Series
Introduction to Input-Output Based LCA. Admin Issues Friday Feb 16th? 1-2:30 confirmed HERE.
Experimental Design, Response Surface Analysis, and Optimization
AEB 37 / AE 802 Marketing Research Methods Week 7
Life Cycle Assessment: History and Framework
Decision Making: An Introduction 1. 2 Decision Making Decision Making is a process of choosing among two or more alternative courses of action for the.
Delivering sustainable solutions in a more competitive world Carbon Footprinting: Methodological Approaches, Challenges & Opportunities Simon Aumônier.
Economic Input-Output Life Cycle Assessment / Life Cycle Assessment and Green Design.
15/4/091 Life Cycle Assessment Life Cycle Assessment Energy, Material, flow.
1 Learning to Detect Objects in Images via a Sparse, Part-Based Representation S. Agarwal, A. Awan and D. Roth IEEE Transactions on Pattern Analysis and.
Software Quality Control Methods. Introduction Quality control methods have received a world wide surge of interest within the past couple of decades.
Life Cycle Assessment (LCA)
Life Cycle Assessment (LCA): Connections with Sustainability Scott Matthews Green Design Institute.
1 Validation and Verification of Simulation Models.
Streamlined LCA © Colin Fitzpatrick. Streamlining the LCA Process Full LCA is only practical with no limitations to time, expense, data availability etc…
Life Cycle Analysis and Resource Management Dr. Forbes McDougall Procter & Gamble UK.
Understanding a life-cycle approach Learning unit B: exploring eco-efficiency DEDICATED TO MAKING A DIFFERENCE.
Radial Basis Function Networks
SOREME PROJECT (LIFE + 11 ENV/IT/109) EIGHTEEN MONTHS MEETING ENEA ACTIVITIES Faenza Research Laboratories Bologna Research Center LIFE + 11 ENV/IT/109.
Life Cycle Assessment Overview of LCA and Methodology October 30, 2012.
An Introduction to Life Cycle Analysis (LCA) and Life Cycle Thinking (LCT) Adam de Eyto-PhD, BDes (Hons) Industrial Design Lecturer/Sustainable Design.
Evaluating Performance for Data Mining Techniques
Clara María Mollá Muñoz. PFG_T31 17-July, Introduction. Sustainable architecture The strategies are focused on energy efficiency. Reduce environmental.
Life Cycle Overview & Resources. Life Cycle Management What is it? Integrated concept for managing goods and services towards more sustainable production.
Summary of LCA Review including carbon issues Julian Parfitt WRAP LCA Symposium ‘Making the most of LCA thinking’ 23 November 2006, Savoy Place, London.
Life Cycle Analysis. Topics  Definition  Use  Process  Limitations.
1 Global Connections: Forests of the World Activity 8 Making Consumer Choices.
Understanding A Life Cycle Approach. Did you know… Producing one ton of recycled steel saves the energy equivalent of 3.6 barrels of oil and 1.5 tons.
UNESCO Desire – Net project Introduction to Life Cycle Assessment, a sustainability decision-supporting tool Paolo Masoni ENEA – LCA & Ecodesign Lab (PROT.
LIFE CYCLE THINKING »DO NOT DESIGN PRODUCTS! INSTEAD, DESIGN PRODUCT CYCLES THAT ARE COMPATIBLE WITH SUSTAINABLE DEVELOPMENT.« (PRé Consultants) S10-A1:
1 D r a f t Life Cycle Assessment A product-oriented method for sustainability analysis UNEP LCA Training Kit Module f – Interpretation.
1 Systems Analysis Laboratory Helsinki University of Technology How to Benefit from Decision Analysis in Environmental Life Cycle Assessment Pauli Miettinen.
Eurostat Overall design. Presented by Eva Elvers Statistics Sweden.
Introduction A GENERAL MODEL OF SYSTEM OPTIMIZATION.
1 Motivation Web query is usually two or three words long. –Prone to ambiguity –Example “keyboard” –Input device of computer –Musical instruments How can.
Design for Environment Prof. Steven D. Eppinger MIT Sloan School of Management.
CESI Barcelona May 2003 R.BERTI IT Session 1 – Block 2 1 Product Environmental Profile and Benefits for Electrical Utilities R. Berti CESI.
Achieving High Software Reliability Using a Faster, Easier and Cheaper Method NASA OSMA SAS '01 September 5-7, 2001 Taghi M. Khoshgoftaar The Software.
05/11/2015 Workshop Ecolizer The methodology behind the Ecolizer 2.0 An Vercalsteren, Ann Van der Linden 25 February 2011.
Assessment Criteria for the Acceptability of Cycle and Testing Procedure Informal working document DTP Subgroup LabProcICE slide 1 Assessment Criteria.
MACHINE LEARNING 8. Clustering. Motivation Based on E ALPAYDIN 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2  Classification problem:
The LCA of a crystal production: methodological aspects R. Ridolfi, B. Rugani, S. Bastianoni Department of Chemical and Biosystems Sciences, University.
Life Cycle Assessment: Framework. Goal: Life cycle THINKING Many “centers” on campus have seminars with lunch and drinks provided. How should drinks be.
© 2006 Pearson Addison-Wesley. All rights reserved 2-1 Chapter 2 Principles of Programming & Software Engineering.
Life Cycle Assessment (LCA)
LIFE CYCLE ASSESSMENT (LCA). As corporations seek to improve their environmental performance they require new methods and tools. LCA is one such tool.
Life Cycle Assessment JISHNU M Assistant professor Mechanical engineering College of engineering chengannur.
Recent Trends in Fuzzy Clustering: From Data to Knowledge Shenyang, August 2009
NEDC/WLTP correlation process Meeting of TCMV on 17 November 2015
ZeroWIN 3 rd general meeting Southampton, 5-8 July 2010.
Statistical process model Workshop in Ukraine October 2015 Karin Blix Quality coordinator
Chapter 11 Life-Cycle Concepts, Product Stewardship and Green Engineering.
1 Chinese Taipei’s DfE Practices Ray Y. B. Reu Center for Environmental, Safety and Health Technology, ITRI.
Chapter 3: Cost Estimation Techniques
Sustainability and economic impact
What role can Life Cycle Assessment play in the selection of green construction materials? N. L. AMPOFO-ANTI © CSIR
Environmental Health Management (EN481)
FACILITY LAYOUT Facility layout means:
Chapter 3: Cost Estimation Techniques
Chapter 5 Designing the Architecture Shari L. Pfleeger Joanne M. Atlee
Chapter 3: Cost Estimation Techniques
Text Categorization Berlin Chen 2003 Reference:
Chapter 3: Cost Estimation Techniques
Presentation transcript:

Myeon-Gyu Jeong, James R. Morrison and Hyowon Suh ISysE, KAIST Recent Directions Toward Automated Life Cycle Assessment

2 Presentation Overview  1. Introduction  2. LCA via CBR  3. Case study  4. Concepts for LCA at arbitrary levels of detail  5. Concluding remarks 2

1. Introduction 1.Problem definition 2.Related work 3.Motivation 4.Research purpose and scope 5.Comparison to related work 3

4 1.1 Problem definition Planning Concept development System-level design Detail design Testing and refinement Production ramp-up Mission Approval Concept review Production approval Generic Product Development Process System spec. review Critical design review [Design] - known Define part geometry Choose materials Assign tolerances Complete industrial design control doc. [Manufacturing] - yet unknown Piece part production processes Design tooling Define quality assurance processes Begin procurement of long-lead tooling Many Iteration Cycles for Design Improvement Initial DesignImproved Design Input Environmental Impact Evaluation Life Cycle Assessment (LCA) Preceding conditions for eco improvement Standardized by ISO 14040~3 series

5 1.1 Problem definition Concept and General Procedure of Life Cycle Assessment Goal Definition : which products or service are assessed? How to use the result of LCA? Scope definition Life cycle stage Unit process MaterialsResources Parts Ass’y ProductUseDisposal IncinerationLandfill Recycle & Reuse Recycle Inventory analysis Measure envir. burden CO 2 SO x NO x Emission to air T-N T-P metals Emission to water Impact analysis Impact to nature and human Global warming Ozone layer depletion AcidificationWater pollution Detection of important issue Check the reliability of data Interpretation Review and reporting Make reportCritical review Considerable time and money to collect relevant data

6 1.1 Problem definition [Inventory Analysis] Resources Materials Parts Assembly Product Use Disposal Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n Input 1, 2, …,noutput 1, 2, …,n  Collecting all relevant data and information throughout the entire life cycle at the detail design stage is impossible  No matter what data is available, it requires considerable time and money  In case of the product have short development cycle such as cellular phone, LCA put a burden on whole PDP Limitations of LCA is techniques that purposely adopt some sort of [simplified approach] to life cycle assessment Streamlined LCA

7 1.2 Related work Material (Acquisition) Manufacture Use Disposal Material, Energy Air, Water, Waste Material, Energy Air, Water, Waste Material, Energy Air, Water, Waste Material, Energy Air, Water, Waste Environmental Impact BLACK BOX (Numerical &Statistical) Results Product Attribute + Existing Full LCA results Environmental category Life cycle stage Scoring based on checklist Product Attributes Matrix Operation (Weighting, Sum.) Results LCA scopingNumerical LCA Matrix LCA Compare results Learning/Fitting [Output] (Omit indifferent process or in/output) Ines Sousa(2000), Seo, K.K(2006)Graedel & Allenby(1995), Pommer(2001)Christiansen, K.(1997), Hur, T.(2003) No systematic procedure to select life-stage and part/module of product Hard to learning or fitting the black box and applicable to only specific product category & environmental stressor Only qualitative assessment and low accuracy of result Suggested by Limitations [Input] Three basic levels of LCA (Wenzel 1998)

8 1.3 Motivation Design output LCA result In general, most enterprises develop new products by revising or reusing the similar previous product, If we collect the LCA result of previous product, then we can estimate the LCA of new product from previous cases Power trainElectricsInterior Power trainElectricsInterior LCA result for regulation, certification Battery Engine Brake module Seat Case based reasoning for LCA Case retrievalAdaptation Complicated LCA process

9 1.4 Research purpose and scope Planning Concept development System-level design Detail design Testing and refinement Production ramp-up Mission Approval Concept review System spec. review Critical design review Production approval Many Iteration Cycles Generic Product Development Process Design for Environment CBR for LCA Case indexing - Case clustering by k-medoids Case adaptation - Geometry attribute based linear modeling algorithm - Multi-regression analysis Case representation - FBSE expressions - Relations Case retrieval & selection - Similarity measurement and computation Support

Comparison to related work Standard LCALCA scopingMatrix based Substitution of LCI DB Proposed method PrecisionHighMediumLowMediumMedium-High Key technique Allocation, mass balance models Allocation, mass balance, empirical models Checklist based quality assessment ANN models CBR, FBSE, Regression Data typeQuantitative Qualitative/ Quantitative Quantitative Utilization of LCI DB Yes NoneYesNone Modeling effort required HighMediumLowHighMedium Required Resource HighestHighLowMedium Intended user Environmental expert Product designer Environmental expert Product designer Applicable to enterprise LowMediumHighMediumHigh

2. LCA via CBR 1.Overview of the method 2.An FBSe representation 3.Similarity measure 4.Case indexing 5.Case retrieval and selection 6.Case adaptation 11

Overview of the method 12 Find similar cluster Retrieve close case set to P Case adaptation Estimated LCA result Case formulation Clustering (k-medoid) Case building Flow Consider Legend Save as new case Old case w/ LCA Product/part specification Function decomposition FBSE modeling LCA result Product/part specification Function decomposition FBS modeling New problem w/o LCA Behavior similarity Structure (Non-numeric) Function similarity Structure (Numeric) Similarity sum Weighting Similarity measure Construct new cluster set Select Adaptation attribute Regression modeling Find optimal solution set Preprocessing area Apply solution set to N

An FBSE representation 13 [Function-Behavior-State(structure) model] by Umeda Function: The purpose of the design (e.g. the purpose of a fan is to move the air) Behavior: The principle used to achieve the function (e.g. propeller fan is a kind of fan to move the air) Structure: The physical characteristics of the component (e.g. geometry size, material, color) Environmental impact: The component effect in the eleven eco-indicator 99 categories (e.g. climate change, ozone layer) Problem space Solution space [New FBSE model] Fan FunctionTo move the air BehaviorCross flow type StructureNumber of blade: 20 Diameter: 50mm Length: 230mm … Environmental impact Climate change: Pt Radiation: 0.324mPt … [Example of FBSE expression] Two shafts have same geometry and material To support load To transfer torque Require lubricant at “Use” stageNo input at “Use” stage Different LCA result T1T1 T2T2 B F A

An FBSE representation 14 Function Behavior Structure Environmental effect FunctionFvFv FoFo fAfA (move)(air) ……… Behaviorw1w1 w2w2 w3w3 w 32 (cross)(flow)(fan)… (single)(type)-- … ………… Structural 1 (material)(galvanized),(sheet),(steel) (color)(silver) (surface),(treatment)(powder),(coating) …… Structural 2 (mass)220 (wheel), (diameter)80 (length)230 (number),(of),(blades)26 (number),(of),(plates)4 …… Structural 3 (revolution),(speed) ……… Env. effectLPR 1 (carcinogens) … R 11 (fossil fuels) eAeA 1 (raw material acquisition)………… 2 (part manufacturing process) (cutting),(by),(milling) … (assembly),(by),(rolling) … …………… 6 (Disposal)…………

Similarity measure Function Attribute Behavior Attribute Structure Attribute Environmental effect Functional basis by Hirtz et al., at NIST Standard or general engineering terminology Eco-indicator 99 method Nonnumerical value type Numerical value type Product specifications or BOM terminology Function (f) consist of pairs of words: function verb (F v ) and function object (F o ) Ex) ((move), (air)) Behavior (b) consists of up to 32 phrases Ex) ((cross, flow, fan)) The environmental effect e  E := L × P 32 × R 11 L is the the set of life cycle stage Structures consist of three parts S=S 1 ×S 2 ×S 3 S 1 is a set of two phrase vectors used for nonnumeric descriptions Ex) ((material), ((galvanized), (sheet), (steel))) S 2 is a set of vectors, each consisting of a phrase and a real number Ex) ((mass), 220) S 3 is a set of vectors, each consisting of a phrase and two real numbers Ex) (((revolution), (speed)), 500.0, ) Tracing the degree of kinship from hierarchical function structure Cosine similarity Point matching function Interval matching function Attribute type LayerModeling languageSimilarity Measure function

Similarity measure 1. Function verb similarity 2. Function object similarity 3. Behavior similarity 4. Structure similarity a) Two phrase vectors used for nonnumeric descriptions Where, the indicator function I(x, y) = 1, if x=y, and 0, otherwise. b) Structural descriptions with real number values c) The set of vectors, each consisting of a phrase and two real numbers Where, I 2 (x, y) = 1, if x < y, and 0, otherwise 5. Overall similarity measure

Case indexing c1c1 c2c2 c3c3 c4c4 c5c5 c6c6 c7c7 c8c8 C1C1 C2C2 c1c1 c3c3 c5c5 c8c8 c2c2 c4c4 c6c6 r1r1 r2r2 c7c7 k-medoids clustering*

18 c2c2 c4c4 c6c6 r2r2 (v 2 ) c1c1 c5c5 C2C2 c7c7 c3c3 c2c2 c4c4 c6c6 r3r3 (v 3 ) c1c1 c5c5 C3C3 c7c7 c3c3 Case memory c2c2 c4c4 c6c6 c7c7 r1r1 (v 1 ) c1c1 c3c3 c5c5 N r C1C1 2.5 Case retrieval and selection c3c3 c6c6 r c7c7 N Selected case set C N := {c i  C R : U(c i,N) ≤ r}

Case adaptation For case t(j) (mass)220 (wheel), (diameter)80 (length)230 For N (mass)180 (length)145 (number),(of),(blades)26 Basis for linear regression (length) (mass) c t(j)  C N (l,p) c3c3 c6c6 r c7c7 N z t(j) contains 11 real numbers for the ecological effects of that case for life cycle l and unit process p. Where, t(j) is the original case index Each row of E contains the 11 errors for the eco-impact categories for a particular case By least square error minimization, optimal decision variable values will be: The estimated ecological effect row vector z N  R 1×11 for new product module N in the life cycle stage l for unit process p is:

3. Case study 1.Outline of case study 2.Case memory organization by k-medoids clustering 3.Case adaptation and results 1.Case scenario 1 2.Case scenario 2 20

Outline of case study Simple Specifications Material Plate Rolled aluminum (0.6T) Blade Rolled aluminum (0.2T) Mass (g)123 Wheel diameter (mm)60 Length (mm)230 No. of blade26 No of plate4 Max. RPM2000 Impeller profileCross flow Flow typeSingle Goal definition Estimate eco impact values of cross flow fan of vehicle air purifier Intended user: design engineer Scope definition Interested area is from raw material acquisition to part assembly (Upstream process) Raw material acquisition Part manufacturingAss’yTransportationUseDisposal Interested Area Target item New problem P: Cross flow fan in vehicle air purifier

Case memory organization by k-medoids clustering Cluster No Medoid No Distance Distance of P of each cluster medoid Backward curved Forward vaned Axial flowCross flow Backward inclined Backward vaned Strip Tablock (Fergas) SingleDoubleSingleDouble Centrifugal PropellerTubeaxial Mixed flow Classification of Impeller(blade) profile Total 100 cases were collected Environmental impact was evaluated by SimaPro 7 (Commercial SW) [Case memory of fan] Cluster 2 is the closest cluster to P

Case adaptation and results – Case scenario 1

Case adaptation and results – Case scenario 1 Avg 2.56%

Case adaptation and results – Case scenario 2

Case adaptation and results – Case scenario 2 Avg 6.88%

4. Concepts for LCA at arbitrary levels of detail 27

Concepts for LCA at arbitrary levels of detail Product A F A Sub-product A1 F A1 Sub-product A2 F A2 Component A3 F A3, B A3, S A3 Component A4 F A4, B A4, S A4 Component A5 F A5, B A5, S A5 Component A6 F A6, B A6, S A6 Electric fan {(make), (wind)} Fan {(move), (air)} Motor {(rotate), (fan)}

29 Model C F C Sub-model C1 F A1 Sub-model C2 F A2 Sub-model C3 F A3, B A3, S A3, E A3 Sub-model C4 F A4, B A4, S A4, E A4 Sub-model C5 F A5 Sub-model C6 F A6, B A6, S A6, E A6 Sub-model C7 F A5, B A5, S A5, E A5 Sub-model C8 F A6, B A6, S A6, E A6 cases Product A F A Sub-product A1 F A1 Sub-product A2 F A2 Component A3 F A3, B A3, S A3, E A3 Component A4 F A4, B A4, S A4, E A4 Component A5 F A5, B A5, S A5, E A5 Component A6 F A6, B A6, S A6, E A6 Product B F B Sub-product B1 F B1, B B1, S B1, E B1 Sub-product B2 F B2 Component B3 F B3, B B3, S B3, E B3 Component B4 F B4, B B4, S B4, E B4 A3 is instance of C3 A4 is instance of C4 B1 is instance of C6 B4 is instance of C8 Old case A Old case B Case memory Model C is the generalized functional hierarchy for specific product family Concepts for LCA at arbitrary levels of detail

30 Model C F C Sub-model C1 F A1 Sub-model C2 F A2 Sub-model C3 F A3, B A3, S A3, E A3 Sub-model C4 F A4, B A4, S A4, E A4 Sub-model C5 F A5 Sub-model C6 F A6, B A6, S A6, E A6 Sub-model C7 F A5, B A5, S A5, E A5 Sub-model C8 F A6, B A6, S A6, E A6 cases Product N F N Sub-product N1 F N1 Sub-product N2 F N2 Component C3 F N3, B N3, S N3, E N3 Component C4 F N4, B N4, S N4, E N4 Sub-product N5 F N5 Component c6 F N6, B N6, S N6, E N6 Component C7 F N5, B N5, S N5, E N5 Component C8 F N6, B N6, S N6, E N6 If the function of product N is not fully decomposed, we cannot estimate the E of N1, N2 and N5. However, if the product N is subset of Model C, C3, C4, C6, C7 and C8 will be anticipated lower function. After confirm the sub functions and associated behavior, structure, finally we can estimate environmental effect with LCA via CBR process Concepts for LCA at arbitrary levels of detail

5. Concluding remarks 31

32 Concluding remarks  1. Introduction  2. LCA via CBR  3. Case study  4. Concepts for LCA at arbitrary levels of detail 32

Appendix 33

34 * Functional basis reconciled function set 34 CorrespondentsTertiarySecondaryPrimary SecondaryTertiaryCorrespondents * Reference: NIST Technical Note 1447 “A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts”

35 *k-medoids clustering algorithm The k-medoids algorithm is a clustering algorithm related to the k-means algorithm and the medoid shift algorithm. In contrast to the k-means algorithm, k-medoids chooses data points as centers (medoids or exemplars). 1. Arbitrary select k of the n data points as the medoids 2. Associate each data point to the closest medoid, and calculate total cost of each cluster 3. Swapping medoid and random case, and calculate total cost 4. Finalized cluster set In our research, similarity measurement can be defined as the sum of functional distance, behavioral distance and structural distance. However each indexing layer have different data type, and some of them have nonnumeric value. Therefore, k-medoids clustering algorithm is appropriate to us than k-means.