Interactions of Radiation With Matter

Slides:



Advertisements
Similar presentations
X-RAY INTERACTION WITH MATTER
Advertisements

X-rays : Their Production Their Interaction with Matter
X-Ray & γ-Ray Interactions with Matter
Gamma-Ray Spectra _ + The photomultiplier records the (UV) light emitted during electronic recombination in the scintillator. Therefore, the spectrum collected.
CHARACTERISTICS OF INTERACTIONS. In a radiation interaction, the radiation and the material with which it interacts may be considered as a single system.
X-Ray Interaction with Matter & Human Biology
Physics of X-rays By Dr. Amr A. Abd-Elghany.
Physics of Radiography
Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter.
X-ray. X-Rays # Discovered in 1895 by Roentgen # “X” Rays because he didn’t know what they were! # An ionising radiation at a higher level on EM spectrum.
Interaction of High Energy Radiation with Matter review Two basic types Excitation electrons move to a higher orbital shell temporarily ~70% of charged.
Radiation Interaction Q&A
BME 560 Medical Imaging: X-ray, CT, and Nuclear Methods
Types of Radiation Interactions All or Nothing Many Small There is a finite probability per unit length that the radiation is absorbed. If not, there is.
INTERACTION OF IONISING RADIATION WITH MATTER
Interactions with Matter
Interaction of radiation with matter - 3
Physics of Radiography Interaction with matter. By the end of the first part of the session you should be able to: 1.Understand what can happen as x-ray.
Interaction of Gamma-Rays - General Considerations uncharged transfer of energy creation of fast electrons.
5.4.1 X-Rays. (a) describe the nature of X-rays Stowmarket Physics X-rays - nature Forms of electromagnetic radiation Short wavelength High frequency.
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Reference Reading: Chapter 2, pp 18- end of chapter.
DMI 261 Radiation Biology AndProtection. Unit 2 RADIATION Electromagnetic Spectrum –The frequency range of electromagnetic radiation and the photon wavelength.
Interactions of Radiation With Matter
Resident Physics Lectures
1 Patient Interactions 2010FINAL. 2 1.______________ 2.______________ 3.______________ 4.______________ 5.______________.
Patient Interactions Photoelectric Classic Coherent Scatter
Radiation Protection Unit 2
By Daphne Laino and Danielle Roy. The Physics of Radiography Two basic types of x-ray imaging modalities: projection radiography and computed tomography.
1 Dosimetry part 1: X-ray interactions with matter G.Haddadi, PhD, MSc Associated prof. of Medical Physics Fassa University of Medical Sciences.
Basic radiation protection & radiobiology
Photon Tissue Interactions
1 Nuclear Stability The larger the atom, the greater the proportion of the nucleus that must be neutrons. –The A/Z ratio is greater than 2 (or the N to.
Resident Physics Lectures Christensen, Chapter 4 Basic Interactions Between X-Rays and Matter George David Associate Professor Medical College of Georgia.
Medical Imaging Radiation I. Naked to the Bone: Medical Imaging in the Twentieth Century (Paperback)by Bettyann Kevles Bettyann Kevles E=mc2: A Biography.
Interactions of radiation with Matter
© Jimoid.com 2005 Ionising Radiation There are two types of radiation; ionising and non-ionising. Radiation Ionising Non-ionising Indirectly ionising (neutral.
Medical Image Analysis Interaction of Electromagnetic Radiation with Matter in Medical Imaging Figures come from the textbook: Medical Image Analysis,
X-rays discovered in 1895 by Wilhem Roentgen Roentgenology – Branch of medicine dealing with x-ray or gamma rays in diagnosis and treatment. Radiology.
By Dr: Nahla Nagy Assistant Professor Radiological Science Interactions of X-Rays with matter.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Interactions of EM Radiation with Matter
Appendix G1: Chapter 12: X-Ray Interaction with Matter
Attenuation As x-rays pays through matter, the exit beam will contain less photons than the entrance beam. This reduction in the quantity of photons is.
Dr. Mohammed Alnafea Methods of Radioactive Decay.
Gamma and X ray interactions
RAD 354 Chapt. 9 Interaction with Matter Five Interactions to know – Coherent (classical, unmodified, Thompson) – Compton – Photo Electric – Pair Production.
INTERACTIONS OF RADIATION WITH MATTER. twCshttp:// twCs
Interaction of Radiation with Matter
Interaction of x-ray photons (and gamma ray photons) with matter.
Dr. Mohammed Alnafea Radiation Interaction with matter.
Alhanouf Alshedi Basic Interactions of Radiation with Matter 2 ed Lecture.
Dr Rupak Sethuraman Radiation Biology – 1. FORMAT Introduction Sources of radiation Methods of interaction of radiation with the human body Dosimetry.
Barium & Iodine Imaging Physics
Interactions of Ionizing Radiation
Interaction of Radiation with Matter
Chapter 9 Concepts you already know!!! INTENSITY = ROENTGENS AKA EXPOSURE l mAs and mR proportional? l kVp and mRproportional? l Distance and mRproportional?
Chapter 2 Radiation Interactions with Matter East China Institute of Technology School of Nuclear Engineering and Technology LIU Yi-Bao Wang Ling.
2.4.2 interaction of x-rays with matter
Review or Introduction to Atomic and Nuclear Physics
Interactions of Radiation With Matter
RAD 254 Chapter 10 X-ray interaction with matter
X-ray Interactions with Matter
Concepts you already know!!!
Resident Physics Lectures (year 1)
CLRS 321 Nuclear Medicine Physics and Instrumentation 1
Interaction of Radiation with Matter
Lecturer Radiological Science
Chapter 5 The Types of Radiation.
INTERACTION OF X-RAYS WITH MATTER
Presentation transcript:

Interactions of Radiation With Matter RADL 70 Kyle Thornton

Basic Concepts Of Interaction Three possible occurrences when x or gamma photons in the primary beam pass through matter: No interaction at all Known as transmission Absorption Scatter The latter two are methods of attenuation

Attenuation The reduction of x-ray photons as they pass through matter Primary radiation – attenuation = remnant or exit radiation

Attenuation Of An X-Ray Photon

The Five Interactions Of X and Gamma Rays With Matter Photoelectric effect Very important in diagnostic radiology Compton scatter Coherent scatter Not important in diagnostic or therapeutic radiology Pair production Very important in therapeutic radiology Photodisintegration

Photoelectric Effect All of the energy of the incoming photon is totally transferred to the atom Following interaction, the photon ceases to exist The incoming photon interacts with an orbital electron in an inner shell – usually K The orbital electron is dislodged To dislodge the electron, the energy of the incoming photon must be equal to, or greater than the electron’s energy

Photoelectric Effect The incoming photon gives up all its energy, and ceases to exist The ejected electron is now a photoelectron This photoelectron now contains the energy of the incoming photon minus the binding energy of the electron shell This photoelectron can interact with other atoms until all its energy is spent These interactions result in increased patient dose, contributing to biological damage

Photoelectric Effect

Photoelectric Effect A vacancy now exists in the inner shell To fill this gap, an electron from an outer shell drops down to fill the gap Once the gap is filled, the electron releases its energy in the form of a characteristic photon This process continues, with each electron emitting characteristic photons, until the atom is stable The characteristic photon produces relatively low energies and is generally absorbed in tissue

Characteristic Radiation Cascade

The Byproducts of the Photoelectric Effect Photoelectrons Characteristic photons

The Probability of Occurrence Depends on the following: The energy of the incident photon The atomic number of the irradiated object It increases as the photon energy decreases, and the atomic number of the irradiated object increases When the electron is more tightly bound in its orbit When the incident photon’s energy is more or close to the binding energy of the orbital electron This type of interaction is prevalent in the diagnostic kVp range – 30 - 150

What Does This All Mean? Bones are more likely to absorb radiation This is why they appear white on the film Soft tissue allows more radiation to pass through than bone These structures will appear gray on the film Air-containing structures allow more radiation to pass through These structures will appear black on the film

Compton Scattering An incoming photon is partially absorbed in an outer shell electron The electron absorbs enough energy to break the binding energy, and is ejected The ejected electron is now a Compton electron Not much energy is needed to eject an electron from an outer shell The incoming photon, continues on a different path with less energy as scattered radiation

Compton Scatter

Byproducts Of Compton Scatter Compton scattered electron Possesses kinetic energy and is capable of ionizing atoms Finally recombines with an atom that has an electron deficiency Scattered x-ray photon with lower energy Continues on its way, but in a different direction It can interact with other atoms, either by photoelectric or Compton scattering It may emerge from the patient as scatter Contributes to radiographer dose or Contributes to film fog

Probability Of Compton Scatter Occurring Increases as the incoming photon energy increases More probable at kVp ranges of 100 or greater Results: Most of the scattered radiation produced during a radiographic procedure The scatter is isotropic Sidescatter, backscatter, or small-angle (forward)

Coherent Scatter Occurs at low energies – below 30 kVp An incoming photon interacts with an atom The atom vibrates momentarily Energy is released in the form of an electromagnetic wave A combination of these waves form a scatter wave The photon changes its direction, but no energy is transferred May result in radiographic film fog

Pair Production Does not occur in the diagnostic energy range Incoming photon must have an energy of at least 1.02 MeV This process is a conversion of energy into matter and then matter back into energy Two electrons are produced in this interaction

Pair Production An incoming photon of 1.02 MeV or greater interacts with the nucleus of an atom The incoming photon disappears The transformation of energy results in the formation of two particles Negatron Possesses negative charge Positron Possesses a positive charge

Pair Production

Positrons Considered antimatter Do not exist freely in nature Cannot exist near matter Will interact with the first electron they encounter An electron and the positron destroy each other during interaction Known as the annihilation reaction This converts matter back into energy Both the positron and electron disappear Two gamma photons are released with an energy of .51 MeV

Pair Production The produced gamma photons may interact with matter through pair production or Compton scatter Pair production is used for positron emission tomography, a nuclear medicine imaging procedure It is also used in radiation therapy

Photodisintegration Occurs at above 10 MeV A high energy photon is absorbed by the nucleus The nucleus becomes excited and becomes radioactive To become stable, the nucleus emits negatrons, protons, alpha particles, clusters of fragments, or gamma rays These high energy photons are found in radiation therapy

Photodisintegration

Interactions Of Particulate Radiation With Matter Alpha radiation is monoenergetic Beta particles and positrons are also monoenergetic These particles lose energy in the form of ion pairs As they pass near or through a neutral atom, they remove energy through the force of attraction or repulsion

Interactions Of Particulate Radiation With Matter Alpha particles ionize by attracting an electron from an atom Beta particles ionize by repelling an electron from an atom

Two Mains Types Of Particulate Interaction Elastic interaction No change in kinetic energy, it is transferred from one particle to another Alpa particles colliding with outer shell orbital electrons Inelastic interaction The total kinetic energy is changed after the interaction Beta particles interacting with inner shell orbital electrons and slow down This produces low penetrating secondary radiation

Summary Of Interactions