© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Classification: Definition l Given a collection of records (training set) l Find a model.

Slides:



Advertisements
Similar presentations
Data Mining Classification: Basic Concepts,
Advertisements

Classification Basic Concepts Decision Trees
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class.
Computational Biology Lecture Slides Week 10 Classification (some parts taken from Introduction to Data Mining by Tan, Steinbach, Kumar)
Statistics 202: Statistical Aspects of Data Mining
1 Data Mining Classification Techniques: Decision Trees (BUSINESS INTELLIGENCE) Slides prepared by Elizabeth Anglo, DISCS ADMU.
Decision Tree.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification Kuliah 4 4/29/2015. Classification: Definition  Given a collection of records (training set )  Each record contains a set of attributes,
Data Mining Classification This lecture node is modified based on Lecture Notes for Chapter 4/5 of Introduction to Data Mining by Tan, Steinbach, Kumar,
Lecture Notes for Chapter 4 and towards the end from Chapter 5
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Lecture Notes for Chapter 4 (2) Introduction to Data Mining
Lecture Notes for Chapter 4 Part III Introduction to Data Mining
Data Mining Classification: Naïve Bayes Classifier
Classification: Basic Concepts and Decision Trees.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification: Decision Trees, and Naïve Bayes etc. March 17, 2010 Adapted from Chapters 4 and 5 of the book Introduction to Data Mining by Tan, Steinbach,
Lecture Notes for Chapter 4 Introduction to Data Mining
CSci 8980: Data Mining (Fall 2002)
1 BUS 297D: Data Mining Professor David Mease Lecture 5 Agenda: 1) Go over midterm exam solutions 2) Assign HW #3 (Due Thurs 10/1) 3) Lecture over Chapter.
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Lecture 5 (Classification with Decision Trees)
Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K.
DATA MINING LECTURE 11 Classification Basic Concepts Decision Trees
Lecture Notes for Chapter 4 CSE 572 Data Mining
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
DATA MINING : CLASSIFICATION. Classification : Definition  Classification is a supervised learning.  Uses training sets which has correct answers (class.
DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees.
1 Data Mining Lecture 3: Decision Trees. 2 Classification: Definition l Given a collection of records (training set ) –Each record contains a set of attributes,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Chapter 4 Classification. 2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of.
Classification: Basic Concepts, Decision Trees, and Model Evaluation
Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes.
Classification Basic Concepts, Decision Trees, and Model Evaluation
Decision Trees and an Introduction to Classification.
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
Machine Learning: Decision Trees Homework 4 assigned
Modul 6: Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of.
Review - Decision Trees
Decision Trees Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation COSC 4368.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Minqi Zhou.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Bab /57 Bab 4 Classification: Basic Concepts, Decision Trees & Model Evaluation Part 2 Model Overfitting & Classifier Evaluation.
Practical Issues of Classification Underfitting and Overfitting –Training errors –Generalization (test) errors Missing Values Costs of Classification.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees. Classification: Definition l Given a collection of records (training set ) –Each record contains a set.
Decision Trees Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting.
Lecture Notes for Chapter 4 Introduction to Data Mining
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4.
Machine Learning: Decision Trees Homework 4 assigned courtesy: Geoffrey Hinton, Yann LeCun, Tan, Steinbach, Kumar.
1 Illustration of the Classification Task: Learning Algorithm Model.
Big Data Analysis and Mining Qinpei Zhao 赵钦佩 2015 Fall Decision Tree.
Classification: Basic Concepts, Decision Trees. Classification Learning: Definition l Given a collection of records (training set) –Each record contains.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining By Tan, Steinbach,
DATA MINING LECTURE 11 Classification Basic Concepts Decision Trees Evaluation Nearest-Neighbor Classifier.
Introduction to Data Mining Clustering & Classification Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
Lecture Notes for Chapter 4 Introduction to Data Mining
EECS 647: Introduction to Database Systems
Data Mining Classification: Basic Concepts and Techniques
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Basic Concepts, Decision Trees, and Model Evaluation
Introduction to Data Mining, 2nd Edition by
Basic Concepts and Decision Trees
آبان 96. آبان 96 Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan,
COSC 4368 Intro Supervised Learning Organization
COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr
Presentation transcript:

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification: Definition l Given a collection of records (training set) l Find a model for class attribute as a function of the values of other attributes. l Goal: previously unseen records should be assigned a class as accurately as possible. –A test set is used to determine the accuracy.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Illustrating Classification Task

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Examples of Classification Task l Predicting tumor cells as benign or malignant l Classifying credit card transactions as legitimate or fraudulent l Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil l Categorizing news stories as finance, weather, entertainment, sports, etc

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification Techniques l Decision Tree based Methods l Rule-based Methods l Memory based reasoning l Neural Networks l Naïve Bayes and Bayesian Belief Networks l Support Vector Machines

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting Attributes Training Data Model: Decision Tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Another Example of Decision Tree categorical continuous class MarSt Refund TaxInc YES NO Yes No Married Single, Divorced < 80K> 80K There could be more than one tree that fits the same data!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Decision Tree Classification Task Decision Tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Start from the root of tree.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Assign Cheat to “No”

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Decision Tree Classification Task Decision Tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Decision Tree Induction l Many Algorithms: –Hunt’s Algorithm (one of the earliest) –CART –ID3, C4.5 –SLIQ,SPRINT

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ General Structure of Hunt’s Algorithm l D t = set of training records of node t l General Procedure: –If D t only records of same class y t  t leaf node labeled as y t –Else: use an attribute test to split the data. l Recursively apply the procedure to each subset. DtDt ?

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Hunt’s Algorithm Don’t Cheat Refund Don’t Cheat Don’t Cheat YesNo Refund Don’t Cheat YesNo Marital Status Don’t Cheat Single, Divorced Married Taxable Income Don’t Cheat < 80K>= 80K Refund Don’t Cheat YesNo Marital Status Don’t Cheat Single, Divorced Married

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Tree Induction l Greedy strategy. –Split the records based on an attribute test that optimizes a local criterion. l Issues –Determine how to split the records  How to specify the attribute test condition?  How to determine the best split? –Determine when to stop splitting

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Tree Induction l Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. l Issues –Determine how to split the records  How to specify the attribute test condition?  How to determine the best split? –Determine when to stop splitting

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to Specify Test Condition? l Depends on attribute types –Nominal(No order; e.g., Country) –Ordinal(Discrete, order; e.g., S,M,L,XL) –Continuous (Ordered, cont.; e.g., temperature) l Depends on number of ways to split –2-way split –Multi-way split

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Splitting Based on Nominal Attributes l Multi-way split: Use as many partitions as distinct values. l Binary split: Divides values into two subsets. Need to find optimal partitioning. CarType Family Sports Luxury CarType {Family, Luxury} {Sports} CarType {Sports, Luxury} {Family} OR

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Splitting Based on Continuous Attributes l Different ways of handling –Discretization to form an ordinal categorical attribute  Static – discretize once at the beginning  Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering. –Binary Decision: (A < v) or (A  v)  consider all possible splits and finds the best cut  can be more compute intensive

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Splitting Based on Continuous Attributes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Tree Induction l Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. l Issues –Determine how to split the records  How to specify the attribute test condition?  How to determine the best split? –Determine when to stop splitting

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to determine the Best Split Before Splitting: 10 records of class 0, 10 records of class 1 Which test condition is the best?

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to determine the Best Split l Greedy approach: –Nodes with homogeneous class distribution are preferred l Need a measure of node impurity: Non-homogeneous, High degree of impurity Homogeneous, Low degree of impurity

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Measures of Node Impurity l Gini Index l Entropy l Misclassification error

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to Find the Best Split B? YesNo Node N3Node N4 A? YesNo Node N1Node N2 Before Splitting: M0 M1 M2M3M4 M12 M34 Gain = M0 – M12 vs M0 – M34

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Measure of Impurity: GINI l Gini Index for a given node t : (NOTE: p( j | t) is the relative frequency of class j at node t). –Maximum (1 - 1/n c ) when records are equally distributed among all classes, implying least interesting information –Minimum (0.0) when all records belong to one class, implying most interesting information

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Examples for computing GINI P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 – P(C1) 2 – P(C2) 2 = 1 – 0 – 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Gini = 1 – (1/6) 2 – (5/6) 2 = P(C1) = 2/6 P(C2) = 4/6 Gini = 1 – (2/6) 2 – (4/6) 2 = 0.444

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Splitting Based on GINI l Used in CART, SLIQ, SPRINT. l When a node p is split into k partitions (children), the quality of split is computed as, where,n i = number of records at child i, n = number of records at node p.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Binary Attributes: Computing GINI Index l Splits into two partitions l Effect of Weighing partitions: –Larger and Purer Partitions are sought for. B? YesNo Node N1Node N2 Gini(N1) = 1 – (5/6) 2 – (2/6) 2 = Gini(N2) = 1 – (1/6) 2 – (4/6) 2 = Gini(Children) = 7/12 * /12 * = 0.333

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Tree Induction l Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. l Issues –Determine how to split the records  How to specify the attribute test condition?  How to determine the best split? –Determine when to stop splitting

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Stopping Criteria for Tree Induction l Stop expanding a node when all the records belong to the same class l Stop expanding a node when all the records have similar attribute values l Early termination (to be discussed later)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Decision Tree Based Classification l Advantages: –Inexpensive to construct –Extremely fast at classifying unknown records –Easy to interpret for small-sized trees –Accuracy is comparable to other classification techniques for many simple data sets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Practical Issues of Classification l Underfitting and Overfitting l Missing Values l Costs of Classification

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Underfitting and Overfitting Overfitting Underfitting: when model is too simple, both training and test errors are large Underfitting

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Overfitting due to Noise Decision boundary is distorted by noise point

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Overfitting due to Insufficient Examples Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region - Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Notes on Overfitting l Overfitting results in decision trees that are more complex than necessary l Training error no longer provides a good estimate of how well the tree will perform on previously unseen records l Need new ways for estimating errors

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to Address Overfitting l Pre-Pruning (Early Stopping Rule) –Stop the algorithm before it becomes a fully- grown tree  Stop if number of instances is less than some user- specified threshold  Stop if class distribution of instances are independent of the available features (e.g., using  2 test)  Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to Address Overfitting… l Post-pruning –Grow decision tree to its entirety –Trim the nodes of the decision tree in a bottom-up fashion –If generalization error improves after trimming, replace sub-tree by a leaf node. –Class label of leaf node is determined from majority class of instances in the sub-tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Model Evaluation l Metrics for Performance Evaluation –How to evaluate the performance of a model? l Methods for Performance Evaluation –How to obtain reliable estimates? l Methods for Model Comparison –How to compare the relative performance among competing models?

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Metrics for Performance Evaluation l Focus on the predictive capability of a model –Rather than how fast it takes to classify or build models, scalability, etc. l Confusion Matrix: PREDICTED CLASS ACTUAL CLASS Class=YesClass=No Class=Yesab Class=Nocd a: TP (true positive) b: FN (false negative) c: FP (false positive) d: TN (true negative)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Metrics for Performance Evaluation… l Most widely-used metric: PREDICTED CLASS ACTUAL CLASS Class=YesClass=No Class=Yesa (TP) b (FN) Class=Noc (FP) d (TN)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Limitation of Accuracy l Consider a 2-class problem –Number of Class 0 examples = 9990 –Number of Class 1 examples = 10 l If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 % –Accuracy is misleading because model does not detect any class 1 example

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Cost-Sensitive Measures l Precision is biased towards C(Yes|Yes) & C(Yes|No) l Recall is biased towards C(Yes|Yes) & C(No|Yes) l F-measure is biased towards all except C(No|No)