1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.

Slides:



Advertisements
Similar presentations
1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
Advertisements

A parallel scientific software for heterogeneous hydrogeoloy
Numerical simulation of solute transport in heterogeneous porous media A. Beaudoin, J.-R. de Dreuzy, J. Erhel Workshop High Performance Computing at LAMSIN.
HDR J.-R. de Dreuzy Géosciences Rennes-CNRS. PhD. Etienne Bresciani ( ) 2 Risk assessment for High Level Radioactive Waste storage.
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
Approximate Analytical/Numerical Solutions to the Groundwater Transport Problem CWR 6536 Stochastic Subsurface Hydrology.
How to solve a large sparse linear system arising in groundwater and CFD problems J. Erhel, team Sage, INRIA, Rennes, France Joint work with A. Beaudoin.
1 High performance Computing Applied to a Saltwater Intrusion Numerical Model E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA.
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
Ali Zafarani Subsurface Processes Group University of California, Irvine.
Inversion of coupled groundwater flow and heat transfer M. Bücker 1, V.Rath 2 & A. Wolf 1 1 Scientific Computing, 2 Applied Geophysics Bommerholz ,
Upscaling and effective properties in saturated zone transport Wolfgang Kinzelbach IHW, ETH Zürich.
Dongxiao Zhang Mewbourne School of Petroleum and Geological Engineering The University of Oklahoma “Probability and Materials: from Nano- to Macro-Scale”
A modified Lagrangian-volumes method to simulate nonlinearly and kinetically adsorbing solute transport in heterogeneous media J.-R. de Dreuzy, Ph. Davy,
The Advection Dispersion Equation
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
Ground-Water Flow and Solute Transport for the PHAST Simulator Ken Kipp and David Parkhurst.
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
Unit 07 : Advanced Hydrogeology
Alternative Modeling Approaches for Flow & Transport in Fractured Rock Douglas D. Walker, DE&S Jan-Olof Selroos, SKB Supported by Swedish Nuclear Fuel.
An efficient parallel particle tracker For advection-diffusion simulations In heterogeneous porous media Euro-Par 2007 IRISA - Rennes August 2007.
Peyman Mostaghimi, Martin Blunt, Branko Bijeljic 11 th January 2010, Pore-scale project meeting Direct Numerical Simulation of Transport Phenomena on Pore-space.
REVIEW. What processes are represented in the governing equation that we use to represent solute transport through porous media? Advection, dispersion,
MA5233: Computational Mathematics
I DENTIFICATION OF main flow structures for highly CHANNELED FLOW IN FRACTURED MEDIA by solving the inverse problem R. Le Goc (1)(2), J.-R. de Dreuzy (1)
Multi-Scale Finite-Volume (MSFV) method for elliptic problems Subsurface flow simulation Mark van Kraaij, CASA Seminar Wednesday 13 April 2005.
Interdisciplinary Modeling of Aquatic Ecosystems Curriculum Development Workshop July 18, 2005 Groundwater Flow and Transport Modeling Greg Pohll Division.
Transport Equations and Flux Laws Basic concepts and ideas 1.A concept model of Diffusion 2.The transient Diffusion Equation 3.Examples of Diffusion Fluxes.
Atmospheric turbulence Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue.
Advection-Dispersion Equation (ADE) Assumptions 1.Equivalent porous medium (epm) (i.e., a medium with connected pore space or a densely fractured medium.
Upscaling, Homogenization and HMM
Combined Geological Modelling and Flow Simulation J. Florian Wellmann, Lynn Reid, Klaus Regenauer-Lieb and the Western Australian Geothermal Centre of.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
Density-Dependent Flows Primary source: User’s Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground- Water Flow.
Solute (and Suspension) Transport in Porous Media
DYNAS Workshop 6,7,8/12/04 Mixed Hybrid Finite Element and Iterative Methods for Flow in Porous Media E. Mouche, C. Le Potier, P. Maugis, L.V. Benet. Commissariat.
Dubrovnik meeting, 13/10/ Different approaches to simulate flow and transport in a multi scale fractured block October 2008 Bernard-Michel G. Grenier.
1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET.
DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG
BsysE595 Lecture Basic modeling approaches for engineering systems – Summary and Review Shulin Chen January 10, 2013.
A comparison between a direct and a multigrid sparse linear solvers for highly heterogeneous flux computations A. Beaudoin, J.-R. De Dreuzy and J. Erhel.
Upscaling of two-phase flow processes in CO 2 geological storage Orlando Silva (1), Insa Neuweiler 2), Marco Dentz (3,4), Jesús Carrera (3,4) and Maarten.
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
Formulation of the Problem of Upscaling of Solute Transport in Highly Heterogeneous Formations A. FIORI 1, I. JANKOVIC 2, G. DAGAN 3 1Dept. of Civil Engineering,
Contaminant Transport CIVE 7332 Lecture 3. Transport Processes Advection The process by which solutes are transported by the bulk of motion of the flowing.
Laboratoire Environnement, Géomécanique & Ouvrages Comparison of Theory and Experiment for Solute Transport in Bimodal Heterogeneous Porous Medium Fabrice.
1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg,
Upscaling of Transport Processes in Porous Media with Biofilms in Non-Equilibrium Conditions L. Orgogozo 1, F. Golfier 1, M.A. Buès 1, B. Wood 2, M. Quintard.
Sept 2007Wetland Pollutant Dynamics and Control 1 ARTIFICIAL WETLAND MODELLING FOR PESTICIDES FATE AND TRANSPORT USING A 2D MIXED HYBRID FINITE.
19 Basics of Mass Transport
CE 3354 Engineering Hydrology Lecture 21: Groundwater Hydrology Concepts – Part 1 1.
(Z&B) Steps in Transport Modeling Calibration step (calibrate flow & transport model) Adjust parameter values Design conceptual model Assess uncertainty.
Stochastic Analysis of Groundwater Flow Processes CWR 6536 Stochastic Subsurface Hydrology.
CO 2 maîtrisé | Carburants diversifiés | Véhicules économes | Raffinage propre | Réserves prolongées © IFP Écrire ici dans le masque le nom de votre Direction.
HYDROGRID J. Erhel – October 2004 Components and grids  Deployment of components  CORBA model  Parallel components with GridCCM Homogeneous cluster.
Lecture Objectives: Define 1) Reynolds stresses and
Lecture Objectives: - Numerics. Finite Volume Method - Conservation of  for the finite volume w e w e l h n s P E W xx xx xx - Finite volume.
1 Simulation of the Couplex 1 test case and preliminary results of Couplex 2 H. HOTEIT 1,2, Ph. ACKERER 1, R. MOSE 1 1 IMFS STRASBOURG 2 IRISA RENNES 1.
Environmental Engineering Lecture Note Week 10 (Transport Processes) Joonhong Park Yonsei CEE Department CEE3330 Y2013 WEEK3.
Advection-Dispersion Equation (ADE)
Contaminant Transport Equations
Jean-Raynald de Dreuzy Philippe Davy Micas UMR Géosciences Rennes
Objective Numerical methods.
FraC: a DFN conforming meshing approach used to obtain reference simulations for steady-state flow, transport and well-test simulations T-D. Ngo, A. Fourno,
Yoram Rubin University of California at Berkeley
Transport Modeling in Groundwater
Objective Numerical methods Finite volume.
Transport Modeling in Groundwater
Yoram Rubin University of California at Berkeley
Presentation transcript:

1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et Simulation INSA, Rennes, Juin 2010

J. Erhel, INRIA Rennes2 L’eau potable en Bretagne:  70% eaux de surface  Quelques captages profonds © ©Yves Chaux

J. Erhel, INRIA Rennes3

4

5 Understand physical phenomena Manage water resources Prevent risks of pollution Help in remediation Objectives of groundwater numerical models

6J. Erhel, INRIA Rennes SAGE RENNES Software engineering CDCSP LYON Applied mathematics TRANSF RENNES Geophysics LMPG LE HAVRE EROH+EROH+ High Performance computing MICAS 7 great challenges in hydrogeology and a scientific software platform MICAS project

7J. Erhel, INRIA Rennes Porous Media Fracture Networks Physical equations Steady-state or transient flow Advection-diffusion Fractured Porous media H2OLab scientific software platform

8J. Erhel, INRIA Rennes Lack of observations Spatial heterogeneity Stochastic models of flow and solute transport -random velocity field -random solute transfer time and dispersivity Porous geological media fractured geological media Flow in highly heterogeneous porous medium3D Discrete Fracture Network Stochastic models

9J. Erhel, INRIA Rennes Scientific challenge Dispersion of inert solute in 2D porous media and in 3D porous media Scientific challenge Dispersion of inert solute in 2D porous media and in 3D porous media

Fixed head Nul flux injection Advection-dispersion equations Random data K log-normal and exponential correlation Flow equations Asymptotic behavior of dispersion coefficients ? Impact of heterogeneity factor , correlation length λ and Peclet number Pe ? 10 Macro dispersion in heterogeneous porous media

11J. Erhel, INRIA Rennes Macro dispersion Pure convection Articles WRR 2007 and WRR 2008 Macro dispersion Pure convection Articles WRR 2007 and WRR /20

12J. Erhel, INRIA Rennes Effect of molecular diffusion Articles WRR 2007 and WRR 2008 Effect of molecular diffusion Articles WRR 2007 and WRR /20

13J. Erhel, INRIA Rennes Effect of hydrodynamical local dispersion Article WRR 2010 Effect of hydrodynamical local dispersion Article WRR /20

3D Simulations work in progress 3D Simulations work in progress 2/20 14J. Erhel, INRIA Rennes

15J. Erhel, INRIA Rennes Scientific challenge Flow numerical model in 3D fracture networks Scientific challenge Flow numerical model in 3D fracture networks

16J. Erhel, INRIA Rennes Site of Hornelen, Norwegen Fractures exist at any scale with no correlation Fracture length is a parameter of heterogeneity Natural fractured media

a=2.5 a=3.5 a=4.5 17J. Erhel, INRIA Rennes Generated Discrete Fracture Networks

18J. Erhel, INRIA Rennes Physical equations impervious matrix Poiseuille’s law and mass continuity in each fracture Continuity of hydraulic head h and flux V.n at each intersection Spatial discretization conforming mesh mixed hybrid finite element method easy to apply interface conditions Numerical model with conforming mesh Article SISC 2009 Numerical model with conforming mesh Article SISC 2009

19J. Erhel, INRIA Rennes Interface conditions written using mortar spaces Geometrically conforming intersections Slave side and master side Hydraulic head on slave side is L2 projection of hydraulic head on master side Mass continuity through an intersection edge Geometrically non conforming intersections Intersections partly common to more than 2 fractures (because of projections) Several unknowns for each intersection edge: intersection, master, slave Relations between these unknowns Numerical model with non conforming mesh Article Applicable Analysis 2010 and preprint submitted and preprint submitted Numerical model with non conforming mesh Article Applicable Analysis 2010 and preprint submitted and preprint submitted

20J. Erhel, INRIA Rennes Hydraulic head with conforming and non conforming mesh Hydraulic head with conforming and non conforming mesh

21J. Erhel, INRIA Rennes Scientific challenge High Performance Computing Scientific challenge High Performance Computing

22J. Erhel, INRIA Rennes Longitudinal dispersion Transversal dispersion Each curve represents 100 simulations on domains with 67.1 millions of unknowns high performance computing is required Large scale simulations with 2D porous media

23J. Erhel, INRIA Rennes solute transport: particle tracker flow: sparse linear solver Parallel performances Articles PARCO 2006, EUROPAR 2007 Parallel performances Articles PARCO 2006, EUROPAR 2007

24J. Erhel, INRIA Rennes Sparse linear solver for 3D domains Work in progress Sparse linear solver for 3D domains Work in progress 3D porous media: AMG3D fracture networks : PCG+AMG

25J. Erhel, INRIA Rennes Scientific challenge Stochastic simulations Scientific challenge Stochastic simulations

26J. Erhel, INRIA Rennes For j=1,…,N s End For Monte-Carlo simulations For j=1,…,N s Compute V(  j,x) using a finite volume method generate permeability field K(  j,x) using a regular mesh Compute D(  j,t) using a random walker method End For Spread of mass: E[S(ω,t)] ≈1/N s  j S(  j,t)

27J. Erhel, INRIA Rennes Several assumptions of regularity Error E = E[S(ω,t)] - 1/N s 1/N p  j  k (X k -X) (X k -X) T || E || ≤ C (1/ √Ns + 1/ √Np + ∆t + ∆x |ln(∆x)|) Work by J. Charrier and A. Debussche Theoretical convergence analysis Article submitted to SINUM Theoretical convergence analysis Article submitted to SINUM

28J. Erhel, INRIA Rennes Pure advectionPe=1000 Numerical convergence analysis Article in preparation Numerical convergence analysis Article in preparation Fast convergence of Monte Carlo in the ergodic case

29J. Erhel, INRIA Rennes Conclusion and perspectives

30J. Erhel, INRIA Rennes Porous media: numerical stochastic method for flow and solute transport in large 3D heterogeneous domains Fractured media: numerical stochastic method for flow in large 3D Discrete Fracture Networks Large linear systems: use of algebraic multigrid method Uncertainty Quantification: convergence analysis of coupled flow and transport Monte-Carlo simulations High-performance computing: two-level parallelism of random simulations Software development: collaborative platform H2OLAB using software engineering tools Achievements so far

31J. Erhel, INRIA Rennes Macro-dispersion analysis in 3D porous media Upscaling rules in 3D Discrete Fracture Networks Domain decomposition methods Uncertainty Quantification methods for non ergodic fields Towards petascale and exascale computing Integration of new modules into H2OLab PerspectivesPerspectives