Logic.

Slides:



Advertisements
Similar presentations
Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Advertisements

Agents That Reason Logically Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 7 Spring 2004.
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Logic CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language.
ITCS 3153 Artificial Intelligence Lecture 11 Logical Agents Chapter 7 Lecture 11 Logical Agents Chapter 7.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 6 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7.
Methods of Proof Chapter 7, second half.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Knoweldge Representation & Reasoning
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 5 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Rutgers CS440, Fall 2003 Propositional Logic Reading: Ch. 7, AIMA 2 nd Ed. (skip )
Logic. Knowledge-based agents Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
February 20, 2006AI: Chapter 7: Logical Agents1 Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent.
Logical Agents (NUS) Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
‘In which we introduce a logic that is sufficent for building knowledge- based agents!’
Pattern-directed inference systems
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Logical Agents Logic Propositional Logic Summary
1 Knowledge Representation. 2 Definitions Knowledge Base Knowledge Base A set of representations of facts about the world. A set of representations of.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Problems in AI Problem Formulation Uninformed Search Heuristic Search Adversarial Search (Multi-agents) Knowledge RepresentationKnowledge Representation.
Propositional Logic: Methods of Proof (Part II) This lecture topic: Propositional Logic (two lectures) Chapter (previous lecture, Part I) Chapter.
An Introduction to Artificial Intelligence – CE Chapter 7- Logical Agents Ramin Halavati
S P Vimal, Department of CSIS, BITS, Pilani
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
1 Logical Inference Algorithms CS 171/271 (Chapter 7, continued) Some text and images in these slides were drawn from Russel & Norvig’s published material.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Reasoning with Propositional Logic automated processing of a simple knowledge base CD.
Dr. Shazzad Hosain Department of EECS North South Universtiy Lecture 04 – Part B Propositional Logic.
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
1 Logical Agents Chapter 7. 2 Logical Agents What are we talking about, “logical?” –Aren’t search-based chess programs logical Yes, but knowledge is used.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Logical Agents Russell & Norvig Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
Artificial Intelligence Logical Agents Chapter 7.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.
CS666 AI P. T. Chung Logic Logical Agents Chapter 7.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
EA C461 Artificial Intelligence
EA C461 – Artificial Intelligence Logical Agent
EA C461 – Artificial Intelligence Logical Agent
Logical Agents Chapter 7.
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Logical Agents Chapter 7 Selected and slightly modified slides from
Logical Agents Reading: Russell’s Chapter 7
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Agents and Propositional Logic.
CS 416 Artificial Intelligence
Logical Agents Chapter 7.
Methods of Proof Chapter 7, second half.
Presentation transcript:

Logic

Knowledge-based agents Inference engine Domain-independent algorithms Knowledge base Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Tell it what it needs to know Then it can ask itself what to do - answers should follow from the KB Distinction between data and program Fullest realization of this philosophy was in the field of expert systems or knowledge-based systems in the 1970s and 1980s

What is logic? Logic is a formal system for manipulating facts so that true conclusions may be drawn “The tool for distinguishing between the true and the false” – Averroes (12th cen.) Syntax: rules for constructing valid sentences E.g., x + 2  y is a valid arithmetic sentence, x2y + is not Semantics: “meaning” of sentences, or relationship between logical sentences and the real world Specifically, semantics defines truth of sentences E.g., x + 2  y is true in a world where x = 5 and y = 7

Overview Propositional logic Inference rules and theorem proving First order logic

Propositional logic: Syntax Atomic sentence: A proposition symbol representing a true or false statement Negation: If P is a sentence, P is a sentence Conjunction: If P and Q are sentences, P  Q is a sentence Disjunction: If P and Q are sentences, P  Q is a sentence Implication: If P and Q are sentences, P  Q is a sentence Biconditional: If P and Q are sentences, P  Q is a sentence , , , ,  are called logical connectives

Propositional logic: Semantics A model specifies the true/false status of each proposition symbol in the knowledge base E.g., P is true, Q is true, R is false With three symbols, there are 8 possible models, and they can be enumerated exhaustively Rules for evaluating truth with respect to a model: P is true iff P is false P  Q is true iff P is true and Q is true P  Q is true iff P is true or Q is true P  Q is true iff P is false or Q is true P  Q is true iff P  Q is true and Q  P is true

Truth tables A truth table specifies the truth value of a composite sentence for each possible assignments of truth values to its atoms The truth value of a more complex sentence can be evaluated recursively or compositionally

Logical equivalence Two sentences are logically equivalent iff they are true in same models

Validity, satisfiability A sentence is valid if it is true in all models, e.g., True, A A, A  A, (A  (A  B))  B A sentence is satisfiable if it is true in some model e.g., AB, C A sentence is unsatisfiable if it is true in no models e.g., AA

Entailment Entailment means that a sentence follows from the premises contained in the knowledge base: KB ╞ α Knowledge base KB entails sentence α if and only if α is true in all models where KB is true E.g., x = 0 entails x * y = 0 Can α be true when KB is false? KB ╞ α iff (KB  α) is valid KB ╞ α iff (KB α) is unsatisfiable If a╞ b, a is a stronger assertion than b (a rules out more possible worlds)

Inference Logical inference: a procedure for generating sentences that follow from a knowledge base KB An inference procedure is sound if whenever it derives a sentence α, KB╞ α A sound inference procedure can derive only true sentences An inference procedure is complete if whenever KB╞ α, α can be derived by the procedure A complete inference procedure can derive every entailed sentence

Inference How can we check whether a sentence α is entailed by KB? How about we enumerate all possible models of the KB (truth assignments of all its symbols), and check that α is true in every model in which KB is true? Is this sound? Is this complete? Problem: if KB contains n symbols, the truth table will be of size 2n Better idea: use inference rules, or sound procedures to generate new sentences or conclusions given the premises in the KB

Inference rules Modus Ponens And-elimination premises conclusion

Inference rules And-introduction Or-introduction

Inference rules Double negative elimination Unit resolution

Resolution Example: or : “The weather is dry” : “The weather is rainy” γ: “I carry an umbrella”

Resolution is complete To prove KB╞ α, assume KB   α and derive a contradiction Rewrite KB   α as a conjunction of clauses, or disjunctions of literals Conjunctive normal form (CNF) Keep applying resolution to clauses that contain complementary literals and adding resulting clauses to the list If there are no new clauses to be added, then KB does not entail α If two clauses resolve to form an empty clause, we have a contradiction and KB╞ α

Complexity of inference Propositional inference is co-NP-complete Complement of the SAT problem: α ╞ β if and only if the sentence α   β is unsatisfiable Every known inference algorithm has worst-case exponential running time Efficient inference possible for restricted cases Co-NP: class of problems for which the “no” answer is easy to check, e.g., “Is this formula unsatisfiable?”

Definite clauses A definite clause is a disjunction with exactly one positive literal Equivalent to (P1  …  Pn)  Q Basis of logic programming (Prolog) Efficient (linear-time) complete inference through forward chaining and backward chaining conclusion or head premise or body

Forward chaining Idea: find any rule whose premises are satisfied in the KB, add its conclusion to the KB, and keep going until query is found

Forward chaining example Empty circles: symbols known to be true but not yet “processed” Counts: how many premises of each implication are yet unknown

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Backward chaining Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward chaining Forward chaining is data-driven, automatic processing May do lots of work that is irrelevant to the goal Backward chaining is goal-driven, appropriate for problem-solving Complexity can be much less than linear in size of KB

Summary Basic concepts of logic: completeness: derivations can produce all entailed sentences Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for definite clauses