HAMPIRAN NUMERIK SOLUSI PERSAMAAN DIFERENSIAL (lanjutan) Pertemuan 12 Matakuliah: METODE NUMERIK I Tahun: 2008.

Slides:



Advertisements
Similar presentations
Ordinary Differential Equations
Advertisements

Derivation of the third-order
Chapter 6 Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L8&9 KFUPM.
Matematika Pertemuan 13 Matakuliah: D0024/Matematika Industri II Tahun : 2008.
Analisis Varians Dwi Arah Pertemuan 22 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Regresi dan Korelasi Linear Pertemuan 19
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Ordinary Differential Equations Equations which are.
Matematika Pertemuan 20 Matakuliah: D0024/Matematika Industri II Tahun : 2008.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 32 Ordinary Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 31 Ordinary Differential Equations.
Initial-Value Problems
8-1 Chapter 8 Differential Equations An equation that defines a relationship between an unknown function and one or more of its derivatives is referred.
Numerical Solutions of Ordinary Differential Equations
Differential Equations and Boundary Value Problems
Fin500J Topic 7Fall 2010 Olin Business School 1 Fin500J Mathematical Foundations in Finance Topic 7: Numerical Methods for Solving Ordinary Differential.
CSE 330 : Numerical Methods Lecture 17: Solution of Ordinary Differential Equations (a) Euler’s Method (b) Runge-Kutta Method Dr. S. M. Lutful Kabir Visiting.
PART 7 Ordinary Differential Equations ODEs
EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.
Computational Method in Chemical Engineering (TKK-2109)
Computer Animation Algorithms and Techniques
Integration of 3-body encounter. Figure taken from
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Performance & Stability Analysis.
Numerical Solutions of ODE
Finite Difference Methods Definitions. Finite Difference Methods Approximate derivatives ** difference between exact derivative and its approximation.
Integration for physically based animation CSE 3541 Matt Boggus.
Introduction to the Runge-Kutta algorithm for approximating derivatives PHYS 361 Spring, 2011.
Dr. Mujahed AlDhaifallah ( Term 342)
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Sec 21: Generalizations of the Euler Method Consider a differential equation n = 10 estimate x = 0.5 n = 10 estimate x =50 Initial Value Problem Euler.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
Part 7 - Chapter 25.
NUMERICAL DIFFERENTIATION Forward Difference Formula
NILAI WAKTU DARI UANG (Time Value of Money) Pertemuan 11
Matakuliah : R0434/Aesthetics
Ordinary Differential Equations
Matematika Pertemuan 11 Matakuliah : D0024/Matematika Industri II
Projection Pertemuan 10 Matakuliah : Matrix Algebra for Statistics
525602:Advanced Numerical Methods for ME
Class Notes 18: Numerical Methods (1/2)
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L4&5.
Class Notes 19: Numerical Methods (2/2)
Maclaurin and Taylor Series.
Numerical Analysis Lecture 45.
Sec:25.3 RUNGE-KUTTA METHODS.
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Expressing functions as infinite series
Use power series to solve the differential equation. {image}
Sec 21: Analysis of the Euler Method
Part 7 - Chapter 25.
Sec:5.4 RUNGE-KUTTA METHODS.
Numerical Analysis Lecture 37.
Persamaan Diferensial Biasa (Ordinary Differential Equation)
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L2.
5.3 Higher-Order Taylor Methods
ME 123 Computer Applications I Lecture 23: Advanced Graphics 4/17/03
Numerical Analysis Lecture 38.
MATH 175: NUMERICAL ANALYSIS II
Pengintegralan Numerik (lanjutan) Pertemuan 10
Numerical solution of first-order ordinary differential equations
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L3 KFUPM.
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Numerical Computation and Optimization
Differential equations
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Sec 23: Runge–Kutta Methods
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L1 KFUPM.
Numerical solution of first-order ordinary differential equations 1. First order Runge-Kutta method (Euler’s method) Let’s start with the Taylor series.
Presentation transcript:

HAMPIRAN NUMERIK SOLUSI PERSAMAAN DIFERENSIAL (lanjutan) Pertemuan 12 Matakuliah: METODE NUMERIK I Tahun: 2008

Bina Nusantara Runge-Kutta Methods Runge-Kutta methods are very popular because of their good efficiency; and are used in most computer programs for differential equations. They are single-step methods, as the Euler methods.

Bina Nusantara Runge-Kutta Methods To convey some idea of how the Runge-Kutta is developed, let’s look at the derivation of the 2 nd order. Two estimates

Bina Nusantara Runge-Kutta Methods The initial conditions are: The Taylor series expansion

Bina Nusantara Runge-Kutta Methods From the Runge-Kutta The definition of the function Expand the next step

Bina Nusantara Runge-Kutta Methods From the Runge-Kutta Compare with the Taylor series 4 Unknowns

Bina Nusantara Runge-Kutta Methods The Taylor series coefficients (3 equations/4 unknowns) If you select “a” as Note:These coefficient would result in a modified Euler or Midpoint Method

Bina Nusantara Runge-Kutta Method (2 nd Order) Example Consider Exact Solution The initial condition is: The step size is: Use the coefficients

Bina Nusantara Runge-Kutta Method (2 nd Order) Example The values are

Bina Nusantara Runge-Kutta Method (2 nd Order) Example The values are equivalent of Modified Euler

Bina Nusantara Runge-Kutta Method (2 nd Order) Example [b] The values are

Bina Nusantara Runge-Kutta Method (2 nd Order) Example [b] The values are

Bina Nusantara Runge-Kutta Methods

Bina Nusantara The 4 th Order Runge-Kutta The general form of the equations :

Bina Nusantara The 4th Order Runge-Kutta This is a fourth order function that solves an initial value problems using a four step program to get an estimate of the Taylor series through the fourth order. This will result in a local error of O(Dh 5 ) and a global error of O(Dh 4 )

Bina Nusantara 4 th -order Runge-Kutta Method xixi x i + h/2x i + h f1f1 f2f2 f3f3 f4f4

Bina Nusantara Runge-Kutta Method (4 th Order) Example Consider Exact Solution The initial condition is: The step size is :

Bina Nusantara The 4 th Order Runge-Kutta The example of a single step:

Bina Nusantara Runge-Kutta Method (4 th Order) Example The values for the 4 th order Runge-Kutta method

Bina Nusantara Runge-Kutta Method (4 th Order) Example The values are equivalent to those of the exact solution. If we were to go out to x=5. y(5) = ( ) The error is small relative to the exact solution.

Bina Nusantara Runge-Kutta Method (4 th Order) Example A comparison between the 2 nd order and the 4 th order Runge-Kutta methods show a slight difference.

Bina Nusantara The 4th Order Runge-Kutta Higher order differential equations can be treated as if they were a set of first-order equations. Runge-Kutta type forward integration solutions can be obtain. A more direct solution can be obtained by repeating the whole process used in first-order cases.

Bina Nusantara The 4 th Order Runge-Kutta The general form of the 2 nd order equations :

Bina Nusantara The step sizes are: The next step would be :

Bina Nusantara

Soal Latihan Gunakan Metode Runge-Kutta orde 2 dan orde 4 untuk menyelesaikan PDB berikut: 1. y’= -½ x 2 y, pada 0≤x≤1, y(0)=4, dan h=0,2 2. y’= x + y pada 0≤x≤1, y(0)=0, dan h=0,25 3. y’= y sin 2 (x) pada 0≤x≤3, y(0)=1, dan h=0,1