Towards the trans-GZK area ray (from AGASA, AUGER, HIRES TO JEM -EUSO) J. N. Capdevielle, APC, University Paris Diderot

Slides:



Advertisements
Similar presentations
Convergence to GZK prediction in UHE measurements of the primary energy spectrum of cosmic rays J. N. Capdevielle, APC, University Paris Diderot
Advertisements

LHC-Collider Physics and Simulation for High Energy Cosmic Rays
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
Application for Pierre Auger Observatory.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
EAS EXPERIMENT ON BOARD OF THE AIRBUS A380 J. N. Capdevielle, F. Cohen, PCC, College de France K. Jedrzejczak, B. Szabelska, J. Szabelski, T. Wibig The.
Magnetic Field Workshop November 2007 Constraints on Astrophysical Magnetic Fields from UHE Cosmic Rays Roger Clay, University of Adelaide based on work.
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The Telescope Array Low Energy Extension (TALE)‏ Pierre Sokolsky University of Utah.
The performance of LHCf calorimeter was tested at CERN SPS in For electron of GeV, the energy resolution is < 5% and the position resolution.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
Updating Monte Carlo collision generators with LHC data up to √s = 8 TeV Jean-Noël CAPDEVIELLE APC, IN2P3,CNRS Univ. Paris-Diderot, Paris.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
Jonathan Perkin ARENA May 05 Acoustic Cosmic Ray Neutrino Experiment FUTURE PROSPECTS simulation…
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
E.Plagnol - HENA June The EUSO Project ë An overview of the Physics of EUSO ë Detection of UHECR by fluorescence +Cerenkov ë The EUSO detector.
Small-Scale Anisotropy Studies with HiRes Stereo Observations Chad Finley and Stefan Westerhoff Columbia University HiRes Collaboration ICRC 2003 Tsukuba,
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Testing Lorentz Invariance with UHECR Spectrum Li Ye IHEP, CAS, Sep. 26, 2008.
Very Large Volume Neutrino Telescope Workshop Athens 13 – 15 October 2009 Recent Results on Ultra High Energy Cosmic Rays Alan Watson University of Leeds.
Contributions of the University of Bucharest to the study of high energy cosmic rays in the framework of the KASCADE-Grande experiment Octavian Sima Faculty.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
Geomagnetic Spectroscopy: An Estimation of Primary Mass of Cosmic Rays Rajat K Dey 1,2 Arunava Bhadra 2 Jean-No ë l Capdevielle 3 1 Department of Physics.
Alba Cappa Universita’ and INFN Torino Čerenkov Light Measurements for the EUSO Experiment Rencontres de Moriond – Very High Energy Phenomena in the Universe.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
Claudio Di Giulio University of Roma Tor Vergata, INFN of Roma Tor Vergata IDAPP 2D Meeting, Ferrara, May The origin and nature of cosmic rays above.
Status and first results of the KASCADE-Grande experiment
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
AGASA Results Masahiro Teshima for AGASA collaboration
con i neutrini1 Showering Neutrino Astronomies at Horizons.
HiRes 5Y Operations – Program and Context What Physics Will be Done? How Does it Compare With Other Projects?
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
Future Plans and Summary Gordon Thomson Rutgers University.
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
June 1, 2005Tom Gaisser CORSIKA summer school Cosmic-ray cascades in the atmosphere 1)Air shower phenomenology 2)Inclusive fluxes in the atmosphere.
School of Cosmic-ray Astrophysics, Erice, July 4, 2004 Thomas K. Gaisser Role of particle interactions in high-energy astrophysics Uncorrelated fluxes.
Status of the Pierre Auger Observatory Aaron S. Chou Fermilab Fermilab Users’ Meeting June 3, 2003.
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
AMIGA – A direct measurement of muons in Pierre Auger Observatory
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
Lisboa, April 2012 Jornadas LIP Auger 2015 Foi o Ruben que fez o template mas eu ajudei-o no início…
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Lateral Distribution Functions of Extensive Air Showers Abstract The energy is among the characteristics of Ultra High Energy Cosmic Rays (E>5 x
The JEM-EUSO Mission to Explore the Extreme Universe Toshikazu Ebisuzaki RIKEN for the JEM-EUSO Collaboration Toshikazu Ebisuzaki RIKEN for the JEM-EUSO.
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
Jim Matthews Louisiana State University Results from the Pierre Auger Observatory ECRS, Moscow, 4 July
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
A Method of Shower Reconstruction from the Fluorescence Detector M.Giller, G.Wieczorek and the Lodz Auger group GZK-40 Moscow Workshop, May 2006.
HiRes 5Y Operations – Program and Context
Scaling behavior of lateral distribution of electrons in EAS
Pierre Auger Observatory Present and Future
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

Towards the trans-GZK area ray (from AGASA, AUGER, HIRES TO JEM -EUSO) J. N. Capdevielle, APC, University Paris Diderot

Outline Towards Gamma ray Astronomy at UHE from the sky Towards Gamma ray Astronomy at UHE from the sky Energy overestimation in AGASA (treatment of inclined showers) Energy overestimation in AGASA (treatment of inclined showers) Difficulties in AUGER for Tmax and attenuation length measurements Difficulties in AUGER for Tmax and attenuation length measurements convergence to GZK and unified tendancy convergence to GZK and unified tendancy The JEM-EUSO experiment The JEM-EUSO experiment

Xmax (g/cm2) and Nmax for p, Fe initiated showers

Geminated Cascades From  Centaurus (4 l.y.) From  Centaurus (4 l.y.) pair of  ’s (10 19 eV) separated by  700 km pair of  ’s (10 19 eV) separated by  700 km time delay  for a pair p-  (  as 1/  L 2,  L lorentz factor) time delay  for a pair p-  (  as 1/  L 2,  L lorentz factor) a proton (or n) of eV is delayed by 0.6µs a proton (or n) of eV is delayed by 0.6µs From spiral arms(6000 l.y) pair of  ’s lost ! Time delay  for a pair p(or n)-  ~  1ms  still interesting in the case of sources  analysis possible in JEM-EUSO up to 100 l.y.

Extrapolation des modèles d’interactions hadroniques Première interaction importante  donne les caractéristiques générales de la gerbe (Nmax, Xmax et profil latéral) Modèles théoriques sont ajustés sur les données expérimentales  Or pas de données au-delà de 1,8 TeV dans le centre de masse (collisions pp)  extrapolation Distribution de pseudo-rapidité

Pythia A Pythia modele 4 Pythia Atlas PHOJET 1.11sajet Herwig 5.9 Isajet 7.32 Incertitudes Prédictions pour le LHC à 14 TeV dans le centre de masse Multiplicité entre 70 (Isajet ) et 125 (Pythia 6.122A) Combien de particules ? Quelle énergie emportée par la particule leader

Violation du scaling de KNO (1000 collisions) eV

Very large tension for the diquark partners ?

 1 = 500 g/cm 2  2 = 594 g/cm 2 AGASA conversion  600  600   Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Measured: lateral distribution + direction (θ, φ) Density (600m, θ)  Density(600m, 0)  Energy That conversion is energy/size independent

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Results of CORSIKA simulations show complicated and energy dependent form example: Conversion to ''vertical density''

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI How does the conversion to ''vertical density'' work ?

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Cascade theory and CORSIKA simulations results for the highest energies depend on interaction model, but suggest overestimation of energy at AGASA

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI From Bergman spectrum to AGASA spectrum using AGASA conversion Grey area: D.R.Bergman et al. (HiRes Collaboration) 29th ICRC, Pune, India, 2005 Red points: AGASA energy spectrum histograms: MC generated spectrum following Bergman approximately recalculated spectrum using AGASA conversion

Treatment of inclined EAS data from surface arrays and GZK prediction The spectrum from surface array has to be corrected from the overestimation of the primary energy between 10°-35° in the last decade the amended spectrum of AGASA (ISVHECRI aug. 06) is progressing in this direction GZK after 4 decades is going to be confirmed by HIRES, AUGER, AGASA… The overestimation in AGASA data is mainly coming of the special properties of 3D Electromagnetic cascade near maximum, however this correction is small if the distance between maximum and AGASA level is more than 3 c.u. or for heavy composition

Signal dans Auger Simulation  densité de particules Détecteurs Auger  signal en Vertical Equivalent Muons (VEM)  Signal (r) = C 1  e+e- (r) + C 2   (r) VEM Des simulations avec géant4 de la cuve d’Auger : C 1 = 0,47 C 2 = 0,9 – 1

Trans GZK AREA New scales Adequate Advanced Technologies Milesbornes to Quantum Gravity earliest approaches, EUSO and JEM-EUSO

EUSO ~ 1000 x AGASA ~ 30 x Auger EUSO (Instantaneous) ~ 5000 x AGASA ~ 150 x Auger AGASA JEM-EUSO tilt-mode JEM-EUSO FoV

by Boris Khrenov 2006 Progress of the study of EECR expected in the near future: 4×10 5 JEM-EUSO(nadir) JEM-EUSO (tilt)

Conclusions New chances for Gamma ray Astronomy at UHE from ISS with JEM-EUSO New results of LHC updating the simulation GZK behaviour confirmed but some ambiguities on composition remain Xmax different from Xmax via fluorescence ? Change in p-Air interaction above 3 EeV? New Astrophysics with heavy component at UHE? Crucial period for JEM-EUSO entering in the trans GZK area