Bose-Einstein Condesates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal.

Slides:



Advertisements
Similar presentations
Dark Matter, Dark Energy, and the Current State of Cosmology
Advertisements

Astronomical Solutions to Galactic Dark Matter Will Sutherland Institute of Astronomy, Cambridge.
Challenges for the Standard Cosmology Tom Shanks Durham University.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
From Inflation to Galaxies Formation in the Braneword Scenario Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, Hugo Compean, F. Siddhartha.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Quintessence and the Accelerating Universe
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
Theoretical Perspectives Amr El-Zant Canadian Institute for Theoretical Astrophysics.
Quintessence from time evolution of fundamental mass scale.
Growing neutrinos and cosmological selection. Quintessence C.Wetterich A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes, R.Caldwell,
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
Coupled Dark Energy and Dark Matter from dilatation symmetry.
Particle Astrophysics & Cosmology SS Chapter 8 Structure Formation.
Prof. Eric Gawiser Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Particle Physics and Cosmology Inflation.
Galaxy Formation Models Cold Dark Matter is the dominant component of galaxies and is key to their formation and evolution. CDM models have been wonderful.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
Dynamical Dark Energy. What is dynamical dark energy ?
Structure formation in dark energy cosmology La Magia, April 2005.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
 It would appear that there is more matter in the universe, called dark matter, than we see. We believe this because  The edges of galaxies are rotating.
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
Quantum cosmology and scale invariance. quantum gravity with scalar field – the role of scale symmetry.
Universe without Expansion. NATURE | NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies.
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
Cosmological structure formation and dark energy Carlo Baccigalupi Heidelberg, May 31, 2005.
Cosmological Galaxy Formation
The dark universe SFB – Transregio Bonn – Munich - Heidelberg.
Big bang or freeze ?. conclusions Big bang singularity is artefact Big bang singularity is artefact of inappropriate choice of field variables – of inappropriate.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
Big bang or freeze ?. conclusions Big bang singularity is artefact Big bang singularity is artefact of inappropriate choice of field variables – of inappropriate.
Neutrino Models of Dark Energy LEOFEST Ringberg Castle April 25, 2005 R. D. Peccei UCLA.
Universe without Expansion. The Universe is shrinking.
Hypothesis Scalar Field is the Dark Matter and the Dark Energy in the Cosmos, i.e. about 95% of the matter of the Universe. Scalar Field is the Dark Matter.
Composition Until 30 years ago, we thought all matter was “baryonic” matter (protons, neutrons, electrons). Now: 4.6% is baryonic matter 95% is non-baryonic.
ERE 2008September 15-19, Spanish Relativity Meeting 2008, Salamanca, September (2008) Avoiding the DARK ENERGY coincidence problem with a COSMIC.
Cosmology and Dark Matter IV: Problems with our current picture Jerry Sellwood.
Holographic Dark Energy and Anthropic Principle Qing-Guo Huang Interdisciplinary Center of Theoretical Studies CAS
Neutrino Model of Dark Energy Yong-Yeon Keum Academia Sinica/Taiwan Mujuresort, Feb./16-19/2005.
MOND and baryonic dark matter Benoit Famaey (Brussels, ULB)
Axion as a Cold Dark Matter Candidate J. Hwang, H. Noh & C-G Park.
WMAP Cosmology Courtesy of NASA/WMAP Science Team map.gsfc.nasa.gov.
Oscillatons as Galactic Dark Matter Halos Tonatiuh Matos
Dark matter Phase Transition constrained at Ec = O(0.1) eV by LSB rotation curve Jorge Hiram Mastache de los Santos Dr. Axel de la Macorra Pettersson UNIVERSIDAD.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
ETSU Astrophysics 3415: “The Concordance Model in Cosmology: Should We Believe It?…” Martin Hendry Nov 2005 AIM:To review the current status of cosmological.
Sam Young University of Sussex arXiv: , SY, Christian Byrnes Texas Symposium, 16 th December 2015 CONDITIONS FOR THE FORMATION OF PRIMORDIAL BLACK.
Studies of Systematics for Dark Matter Observations John Carr 1.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
Observational Constraints on the Running Vacuum Model
The Scalar Field Dark Matter Model Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, F. Siddhartha Guzman, Dario Nuñez, Luis Ureña,
Mildly Mixed Coupled cosmological models
Dark Matter: A Mini Review
Dark energy from primordial inflationary quantum fluctuations.
Galaxy formation from the IIB Superstring with Fluxes Tonatiuh Matos
Probing the Dark Sector
Cosmology, Dark Matter and Galaxy Formation from Strings Theory Tonatiuh Matos
Tonatiuh Matos fis. cinvestav. mx/~tmatos/ iac
Gamma-ray emission from warm WIMP annihilation
Bose-Einstein Condensates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal.
The Scalar Field Dark Matter Model Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, F. Siddhartha Guzman, Dario Nuñez, Luis Ureña,
“B-mode from space” workshop,
Presentation transcript:

Bose-Einstein Condesates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal. Inflation +  CDM Model = Cosmology Galaxies Formation

Problems with the  CDM Model Dark Energy: Extreme fine tuning for  Coincidence Dark Matter: Cuspy central density profiles Too much substructure Too late galaxy formation Too early metalicity formation Etc.

The Model Examples: Braneword Scenario Superstrings  V  f 1 exp(  ) + f 2 exp(-  ) + … V = V 0 [cosh(  ) – 1] H 2 = 8  /(3M pl 2 )  (1 +  / b )  Inflation  graceful exit  BBN  Cosmology  Fix the free constants.

The Cosmology T. Matos and L. Ureña, Class. Q. Grav. 17(2000)L75 Dark Matter:  V 0 [cosh(  ) –1] Dark Energy:   Baryons, Neutrinos, etc.    0.25    0.7  b  0.05

Scalar Field Fluctuations T. Matos and L. Ureña, Phys. Rev. D63(2001)063506

Natural Cut-off

Summarizing SFDM model is insensitive to initial conditions Behaves as CDM Reproduces all the successes  CDM above galactic scales. Predicts a sharp cut-off in the mass power spectrum The favored values for the two free parameters  20 V 0  (3  M pl ) 4  m   eV

Scalar Field Fluctuation = Halo Tonatiuh Matos and F. Siddhartha Guzman Class. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R); Tonatiuh Matos and F. Siddhartha Guzman, Class.Q. Grav. 18(2001)5055 M  0.1 M 2 Planck /m  If m m  eV M  Mo

Scalar Field Fluctuation = Halo Tonatiuh Matos and F. Siddhartha Guzman Class. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R); Tonatiuh Matos and F. Siddhartha Guzman, Class.Q. Grav. 18(2001)5055

Density Profiles

LSB Galaxies

Conclusion The scalar field is a good candidate to be the Dark Matter of the Universe