HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.

Slides:



Advertisements
Similar presentations
3224 Nuclear and Particle Physics Ruben Saakyan UCL
Advertisements

Kernfysica: quarks, nucleonen en kernen
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Spectroscopy at the Particle Threshold H. Lenske 1.
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
HL-5 May 2005Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-5) Collective excitations of nuclei photo-excitation of GDR particle-hole excitations.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Emission of Scission Neutrons: Testing the Sudden Approximation N. Carjan Centre d'Etudes Nucléaires de Bordeaux-Gradignan,CNRS/IN2P3 – Université Bordeaux.
P461 - Nuclei I1 Properties of Nuclei Z protons and N neutrons held together with a short-ranged force  gives binding energy P and n made from quarks.
Lesson 5 Fundamental Aspects of Nuclear Structure.
P461 - Nuclei II1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections:
Hypernuclear Production in proton- and pion- nucleus Collisions: A Fully Relativistic Description Radhey Shyam Saha Institute of Nuclear Physics, Kolkata,
Nuclear models. Models we will consider… Independent particle shell model Look at data that motivates the model Construct a model Make and test predictions.
P461 - Nuclei I1 Properties of Nuclei Z protons and N neutrons held together with a short-ranged force  gives binding energy P and n made from quarks.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Nucleons & Nuclei a quick guide to the real essentials in the subject which particle and nuclear physicists won’t tell you.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Nucleon-Nucleon Forces
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
1 Nuclear Physics Overview & Introduction Lanny Ray, University of Texas at Austin, Fall 2015 I.Nucleon+Nucleon System II.Nuclear Phenomenology III.Effective.
Experimental evidence for closed nuclear shells Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)
1 Proton-neutron pairing by G-matrix in the deformed BCS Soongsil University, Korea Eun Ja Ha Myung-Ki Cheoun.
Nuclear Models Nuclear force is not yet fully understood.
Nuclear Physics PHY Outline  history  structure of the nucleus nuclear binding force liquid drop model shell model – magic numbers 
 Nature of nuclear forces, cont.  Nuclear Models lecture 3&4.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 The Deuteron Deuterium (atom). The only bound state of two nucleons  simplest.
Wednesday, Feb. 9, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #7 Wednesday, Feb. 9, 2005 Dr. Jae Yu 1.Nuclear Models Liquid Drop Model Fermi-gas.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Monday, Feb. 7, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #6 Monday, Feb. 7, 2005 Dr. Jae Yu 1.Nature of the Nuclear Force Short Range Nature.
Nuclear Physics, JU, Second Semester,
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
QM2 Concept test 4.1 Choose all of the following statements that are correct. (1) If the spatial wave function of a two-particle system is symmetric, the.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
May the Strong Force be with you
Plate Model of Nuclear Physics
The role of isospin symmetry in medium-mass N ~ Z nuclei
Tensor optimized shell model and role of pion in finite nuclei
Structure and dynamics from the time-dependent Hartree-Fock model
CHEM 312 Lecture 8: Nuclear Force, Structure and Models
Gogny’s pairing forces in covariant density functional theory
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Role of Pions in Nuclei and Experimental Characteristics
Neutron Stars Aree Witoelar.
Relativistic extended chiral mean field model for finite nuclei
Nuclear Physics, JU, Second Semester,
Kernfysica: quarks, nucleonen en kernen
Nuclear excitations in relativistic nuclear models
Nuclear Forces - Lecture 2 -
The Color Charge & Bag Model
Pions in nuclei and tensor force
From Atoms, to Nucleons, to Quarks
Nuclear Physics PHY
Kazuo MUTO Tokyo Institute of Technology
Current understanding of the nuclear force
Nuclear Forces.
PHYS 3446 – Lecture #7 Nature of the Nuclear Force Nuclear Models
Presentation transcript:

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear landscape Neutron matter Halo nuclei Hypernuclei Literature: PR 16, 17

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen2 nucleon-nucleon scattering positive (negative) phase shift for attractive (repulsive) potential in scattered

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen3 energy dependence of NN phase shifts phase shift (degrees) Phys. Rev. 182 (1969)1714 s wave: short range repulsive long range attractive p wave: repulsive

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen4 NN potential shape and strength Hamada, Johnston Nucl. Phys. 34 (1962) 382 attractive singlet/triplet s wave, repulsive p wave scattering attractive non-central Tensor term, and LS (spin-orbit) term repulsive core r < 0.49 fm

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen5 general form of NN potential depends on NN separation relative momentum angular momentum must be scalar, P and T invariant, 2N symmetric Tensor term: non-central force mixes different L-states: 4% 3 D 1 -state in d LS term: induces polarized scattered beams central spin-spin Tensor spin-orbit

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen6 polarized scattering p wave (l=1) scattering: symmetric spin wf. (S=1); V LS < 0 repulsive, scattered left attractive, scattered left onpolarizati   right scattered :spins parallel-anti left scattered :spins parallel

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen7 quark state for NN system short distance repulsion: chromomagnetic spin-spin interaction 6 quarks in s-state (l=0): symmetric spin-isospin wf. minimizing chromomagnetic energy  minimizing parallel quark spins  distorting wave function symmetry: l = 0 l = 1  required excitation energy  strong short range repulsion =1/9=8/9

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen8 covalent bonds and meson exchange force energetic favourable spin=0, isospin=0 di-quark direct q exchange suppressed by color restriction color-neutral (sea-quark) exchange: relativistic form of covalent strong force virtual meson exchange: Yukawa potential

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen9 nuclear equation-of-state in-medium interactions and selfenergies determined in relativistic Dirac-Brückner Hartree-Fock theory from realistic NN potential Z=0 pure neutron matter is unbound -16 MeV

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen10 terra incognita nuclei: strongly interacting quantum systems of finite size, balanced by isospin-symmetric strong, -violating Coulomb force spherical shell closure for Z>112? 48 Ni 100 Sn 78 Ni

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen11 single-particle levels nl j shell gaps and intruder states p: (s1/2) 2 (p1/2) 1 n: (s1/2) 2 (p3/2) 4 (p1/2) 2

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen12 halo nuclei quantum phenomenon: weakly bound valence neutrons in classical forbidden region beyond potential barrier with low l i.e. low centrifugal barrier, single-particle structure and strong pairing correlations 2n-halo region of 11 Li as large as 208 Pb radius, mixed (p1/2) 2 (s1/2) 2 configuration multi-nucleon halos: neutron-droplets? N/Z=3

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen13 shell quenching at large N/Z 2n-separation energies  shell gap reduced from 6 MeV ( 100 Sn) to 2 MeV ( 78 Ni) n-potential changes from WS- to softer HO-shape  reduced spin-orbit splitting  high-l intruder moved back across shell gap

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen14 creating and detecting hypernuclei  binding energy: 0 by choice of kinematics (  =0  ) p K-K- -- ()()

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen15  spectrum and levels of hypernuclei  -levels not restricted by Pauli principle in neutron-like potential (shallower for weaker  -N interaction) 11 MeV   may sit in occupied n-levels n from below the Fermi level

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen16 binding energy of  in nuclei  in discrete levels V 0  30 MeV

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen17 production of  hypernuclei (S=-2) H dibaryon (uuddss) ?? study of hyperon-hyperon interaction c  (  - ) = 4.91 cm, long-lived enough to be captured

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen18 Summary lecture (HL-3 ) Nuclear structure Potential and phase shifts NN potential: general form; spin-spin, spin-orbit, tensor part exchange force: virtual di-quark (meson) exchange Terra incognita in nuclear landscape Tasks for exotic-beam facilities Neutron matter: large N/Z for light nuclei Halo nuclei observed Hypernuclei: binding energy and structure

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen19 structure of nuclei: Fermi gas model number of neutron (N) and proton (Z) states up to Fermi momentum: average kinetic energy: V(r) r V 0 =E F +B´