Lecture 8 Examples of Magnetic Fields Chapter 19.7  19.10 Outline Long Wire and Ampere’s Law Two Parallel Contours Solenoid.

Slides:



Advertisements
Similar presentations
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Advertisements

Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Phys 102 – Lecture 12 Currents & magnetic fields 1.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
1 My Chapter 19 Lecture Outline. 2 Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle.
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 30 Sources of the magnetic field
Unit 4 Day 8 – Ampere’s Law & Magnetic Fields thru Solenoids & Toroids Definition of Current Ampere’s Law Magnetic Field Inside & Outside a Current Carrying.
Lecture 19-Wednesday March 11 Magnetic Forces on Moving Charges Mass Spectrometers.
Dale E. Gary Wenda Cao NJIT Physics Department
Lecture 8b – Sources of Magnetic Field
Physics 152 Magnetism Walker, Chapter B Field Outside a Wire Earlier we said that magnetic fields are created by moving charges. A current in a.
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Electromagnet. Wire Field  A moving charge generates a magnetic field. Symmetry with experiencing force Perpendicular to direction of motion Circles.
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Announcements WebAssign HW Set 5 due October 10
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
Sources of the Magnetic Field
Chapter 20 The Production and Properties of Magnetic Fields.
1 Chapter 29: Magnetic Fields due to Currents Introduction What are we going to talk about in chapter 30: How do we calculate magnetic fields for any distribution.
Gauss’ Law for magnetic fields There are no magnetic “charges”.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
Physics 202, Lecture 13 Today’s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between.
Chapter 19 (part 2) Magnetism. Hans Christian Oersted 1777 – 1851 Best known for observing that a compass needle deflects when placed near a wire carrying.
Magnetic Field A magnetic field is a region in which a body with magnetic properties experiences a force.
Chapter 19 Magnetic Force on Wires Solenoids Mass Spectrometers.
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Copyright © 2009 Pearson Education, Inc. Ampère’s Law.
Announcements WebAssign HW Set 6 due this Friday Problems cover material from Chapters 19 Estimated course grades available on e-learning My office hours.
Lecture 16 Magnetism (3) History 1819 Hans Christian Oersted discovered that a compass needle was deflected by a current carrying wire Then in 1920s.
Dr. Jie ZouPHY Chapter 22 Magnetism (Lecture II)
The wires are separated by distance a and carry currents I 1 and I 2 in the same direction. Wire 2, carrying current I 2, sets up a magnetic field B 2.
Thursday, Nov. 3, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #18 Thursday, Nov. 3, 2011 Dr. Jaehoon Yu Torque on a Current.
CHAPTER OUTLINE 30.1 The Biot–Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère’s Law 30.4 The Magnetic Field of a Solenoid.
Announcements WebAssign HW Set 5 due October 10 Problems cover material from Chapters 18 HW set 6 due on October 17 (Chapter 19) Prof. Kumar tea and cookies.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
The Magnetic Force on a Moving Charge The magnetic force on a charge q as it moves through a magnetic field B with velocity v is where α is the angle between.
Magnetic fields By the end of this chapter you should be able to: understand the meaning of magnetic fied and find its magnitude and direction in simple.
Chapter 19: Magnetism Magnets  Magnets Homework assignment : 18,25,38,45,50 Read Chapter 19 carefully especially examples.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Magnetic Fields. Magnetic Fields and Forces a single magnetic pole has never been isolated magnetic poles are always found in pairs Earth itself is a.
Lecture 28: Currents and Magnetic Field: I
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Biot-Savart Law Biot-Savart law: The constant  o is called the permeability of free space  o = 4  x T. m / A.
Applied Physics Lecture 14 Electricity and Magnetism Magnetism
Week 9 Presentation 1 Electromagnets 1. Learning Objectives: 1. Determine the magnitude and direction of the magnetic field strength generated by a straight.
Ph126 Spring 2008 Lecture #8 Magnetic Fields Produced by Moving Charges Prof. Gregory Tarl é
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
PHY 102: Lecture Magnetic Field 6.2 Magnetic Force on Moving Charges 6.3 Magnetic Force on Currents 6.4 Magnetic Field Produced by Current.
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
PHYS 1902 Electromagnetism: 3 Lecturer: Prof. Geraint F. Lewis
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Ampere’s Law Basic Premise Elementary application.
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Chapter 3 Magnetostatics
PHYS 1444 – Section 004 Lecture #11
Electricity and Magnetism
Magnetic Fields due to Currents
19.7 Magnetic Fields – Long Straight Wire
General Physics (PHY 2140) Lecture 14 Electricity and Magnetism
General Physics (PHY 2140) Lecture 8 Electricity and Magnetism
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Electricity and Magnetism
Halliday/Resnick/Walker Fundamentals of Physics
Chapter 19 Magnetism.
Presentation transcript:

Lecture 8 Examples of Magnetic Fields Chapter 19.7  Outline Long Wire and Ampere’s Law Two Parallel Contours Solenoid

Magnetic Field of a Wire Charges flowing in a single wire produce magnetic field, whose field lines circle the wire in the direction according to the right hand rule. The magnetic field strength (B) is the same at all points of the circular path around the wire. B at distance r from a wire carrying current I is:  0 I B =  2  r  0 is the permeability of free space  0  4  10  7 T m / A

Ampere’s Law Andre-Marie Ampere proposed how to calculate the magnetic field in an arbitrarily shaped wire. Ampere’s circuital law states that over any closed path around the wire  (B ‖  l) =  0 Ilaw This law gives an identical result to that for a long, straight current. Ampere’s circuital law is only valid for the currents and fields constant in time.

Magnetic Field Between Two Parallel Conductors Two current-carrying conductors exert magnetic forces on each other. Consider 2 long, straight wires of length l carrying currents I 1 and I 2 and separated by a distance d.  0 I 2 B 2 =  2  d  0 I 2  0 I 1 I 2 F 1 =B 2 I 1 l =  I 1 l =  l 2  d 2  d

Example Two wires positioned one above another parallel to the Earth’s surface have a weight per unit length of 10  4 N/m each. If they are separated by 1 cm and not affected by Earth’s magnetic field, what must be the current (same in both wires) to keep the upper wire in the air? F 1 = mg  0 I 1 I 2 F 2 =  l 2  d mg  0 I 2  =  l 2  d I =  (2  d mg/l  0 ) =  (10 7 dmg/2) = 2.2 A

Two Parallel Conductors F 1  0 I 1 I 2  =  l 2  d Thus, the wires carrying currents in the same direction attract each other. This result is derived using the right-hand rule No 1 and in compliance with Newton’s third law. All magnetic fields originate from moving electric charges. The magnetic force exerted by one wire onto the other is directed toward the other wire. Definition of the unit of current, ampere. 1 A is the current in 2 wires 1 m apart attracting each other with the force per unit length of 2 10  7 N/m.

Magnetic Field of a Solenoid Solenoid is a coil of several closely spaced loops. Consider a solenoid of length l and total number of turns N carrying a current I. The magnetic field inside the solenoid will be: B =  0 n I n = N/l

Current in a Solenoid Problem: A superconducting solenoid is designed to generate a magnetic field of 5 T. If the solenoid winding has 1000 turns/m, what is the required current? B =  0 n I B I =   0 n n = 1000 I = 5/(4  10  ) = 3978 A

Ampere’s Law for a Solenoid The magnetic field B inside a solenoid is uniform and parallel to its axis. B outside a solenoid is virtually zero.  (B ‖  l) = BL =  0 N I N B =  0  I =  0 n I L Picture of a solenoid field

Summary Ampere’s law is a relation between the current in an arbitrarily shaped wire and the magnetic field produced by the wire. Magnetic field of a closed loop increases the magnetic field set up by a piece of wire.