Simulated Annealing Premchand Akella. Agenda Motivation The algorithm Its applications Examples Conclusion.

Slides:



Advertisements
Similar presentations
Artificial Intelligence Presentation
Advertisements

Neural and Evolutionary Computing - Lecture 4 1 Random Search Algorithms. Simulated Annealing Motivation Simple Random Search Algorithms Simulated Annealing.
Simulated Annealing General Idea: Start with an initial solution
CHAPTER 8 A NNEALING- T YPE A LGORITHMS Organization of chapter in ISSO –Introduction to simulated annealing –Simulated annealing algorithm Basic algorithm.
Applying Machine Learning to Circuit Design David Hettlinger Amy Kerr Todd Neller.
Local search algorithms
Local search algorithms
MAE 552 – Heuristic Optimization Lecture 8 February 8, 2002.
Optimization Techniques
MAE 552 – Heuristic Optimization Lecture 6 February 6, 2002.
Nature’s Algorithms David C. Uhrig Tiffany Sharrard CS 477R – Fall 2007 Dr. George Bebis.
Placement 1 Outline Goal What is Placement? Why Placement?
Network Goodness and its Relation to Probability PDP Class Winter, 2010 January 13, 2010.
Simulated Annealing 10/7/2005.
1 Simulated Annealing Terrance O ’ Regan. 2 Outline Motivation The algorithm Its applications Examples Conclusion.
Simulated Annealing Van Laarhoven, Aarts Version 1, October 2000.
Planning operation start times for the manufacture of capital products with uncertain processing times and resource constraints D.P. Song, Dr. C.Hicks.
Stochastic Relaxation, Simulating Annealing, Global Minimizers.
MAE 552 – Heuristic Optimization Lecture 6 February 4, 2002.
Introduction to Simulated Annealing 22c:145 Simulated Annealing  Motivated by the physical annealing process  Material is heated and slowly cooled.
Simulated Annealing G.Anuradha. What is it? Simulated Annealing is a stochastic optimization method that derives its name from the annealing process used.
By Rohit Ray ESE 251.  Most minimization (maximization) strategies work to find the nearest local minimum  Trapped at local minimums (maxima)  Standard.
Elements of the Heuristic Approach
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
1 IE 607 Heuristic Optimization Simulated Annealing.
Simulated Annealing.
1 Local search and optimization Local search= use single current state and move to neighboring states. Advantages: –Use very little memory –Find often.
The Basics and Pseudo Code
Modern Floor-planning Based on B ∗ -Tree and Fast Simulated Annealing Paper by Chen T. C. and Cheng Y. W (2006) Presented by Gal Itzhak
Boltzmann Machine (BM) (§6.4) Hopfield model + hidden nodes + simulated annealing BM Architecture –a set of visible nodes: nodes can be accessed from outside.
1 Simulated Annealing Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.
Simulated Annealing.
Markov Chain Monte Carlo and Gibbs Sampling Vasileios Hatzivassiloglou University of Texas at Dallas.
Thursday, May 9 Heuristic Search: methods for solving difficult optimization problems Handouts: Lecture Notes See the introduction to the paper.
B. Stochastic Neural Networks
Simulated Annealing G.Anuradha.
Introduction to Simulated Annealing Study Guide for ES205 Yu-Chi Ho Xiaocang Lin Aug. 22, 2000.
Introduction to Simulated Annealing Study Guide for ES205 Xiaocang Lin & Yu-Chi Ho August 22, 2000.
Simulated Annealing. Difficulty in Searching Global Optima starting point descend direction local minima global minima barrier to local search.
Probabilistic Algorithms Evolutionary Algorithms Simulated Annealing.
Local search algorithms In many optimization problems, the state space is the space of all possible complete solutions We have an objective function that.
Optimization Problems
Ramakrishna Lecture#2 CAD for VLSI Ramakrishna
An Introduction to Simulated Annealing Kevin Cannons November 24, 2005.
Intro. ANN & Fuzzy Systems Lecture 37 Genetic and Random Search Algorithms (2)
Escaping Local Optima. Where are we? Optimization methods Complete solutions Partial solutions Exhaustive search Hill climbing Exhaustive search Hill.
1 Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations Simulated Annealing (SA)
Optimization Problems
Scientific Research Group in Egypt (SRGE)
Simulated Annealing Chapter
Simulated Annealing Premchand Akella.
Department of Computer Science
Heuristic Optimization Methods
Van Laarhoven, Aarts Version 1, October 2000
Optimization Techniques Gang Quan Van Laarhoven, Aarts Sources used.
By Rohit Ray ESE 251 Simulated Annealing.
Artificial Intelligence (CS 370D)
Subject Name: Operation Research Subject Code: 10CS661 Prepared By:Mrs
Maria Okuniewski Nuclear Engineering Dept.
Heuristic search INT 404.
Optimization Problems
CSE 589 Applied Algorithms Spring 1999
Introduction to Simulated Annealing
Boltzmann Machine (BM) (§6.4)
Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, 2014
More on HW 2 (due Jan 26) Again, it must be in Python 2.7.
More on HW 2 (due Jan 26) Again, it must be in Python 2.7.
Md. Tanveer Anwar University of Arkansas
Greg Knowles ECE Fall 2004 Professor Yu Hu Hen
Stochastic Methods.
Presentation transcript:

Simulated Annealing Premchand Akella

Agenda Motivation The algorithm Its applications Examples Conclusion

Introduction Various algorithms proposed for placement in circuits. Constructive placement vs Iterative improvement. Simulated Annealing – an iterative improvement algorithm.

Motivation Annealing in metals Heat the solid state metal to a high temperature Cool it down very slowly according to a specific schedule. If the heating temperature is sufficiently high to ensure random state and the cooling process is slow enough to ensure thermal equilibrium, then the atoms will place themselves in a pattern that corresponds to the global energy minimum of a perfect crystal.

Simulated Annealing Step 1: Initialize – Start with a random initial placement. Initialize a very high “temperature”. Step 2: Move – Perturb the placement through a defined move. Step 3: Calculate score – calculate the change in the score due to the move made. Step 4: Choose – Depending on the change in score, accept or reject the move. The prob of acceptance depending on the current “temperature”. Step 5: Update and repeat– Update the temperature value by lowering the temperature. Go back to Step 2. The process is done until “Freezing Point” is reached.

Algorithm for placement Algorithm SIMULATED-ANNEALING Begin temp = INIT-TEMP; place = INIT-PLACEMENT; while (temp > FINAL-TEMP) do while (inner_loop_criterion = FALSE) do new_place = PERTURB(place); ΔC = COST(new_place) - COST(place); if (ΔC < 0) then place = new_place; else if (RANDOM(0,1) > e -(ΔC/temp) ) then place = new_place; temp = SCHEDULE(temp); End.

Parameters INIT-TEMP = ; INIT-PLACEMENT = Random; PERTURB(place) 1. Displacement of a block to a new position. 2. Interchange blocks. 3. Orientation change for a block. SCHEDULE.

Cooling schedule

Convergence of simulated annealing

Algorithm for partitioning Algorithm SA Begin t = t 0 ; cur_part = ini_part; cur_score = SCORE(cur_part); repeat comp1 = SELECT(part1); comp2 = SELECT(part2); trial_part = EXCHANGE(comp1, comp2, cur_part); trial_score = SCORE(trial_part); δs = trial_score – cur_score; if (δs < 0) then cur_score = trial_score; cur_part = MOVE(comp1, comp2); else r = RANDOM(0,1); if (r < e -(δs/t) ) then cur_score = trial_score; cur_part = MOVE(comp1, comp2); until (equilibrium at t is reached) t = αt (0 < α < 1) until (freezing point is reached) End.

Qualitative Analysis Randomized local search. Is simulated annealing greedy? Controlled greed. Once-a-while exploration. Is a greedy algorithm better? Where is the difference? The ball-on-terrain example.

Ball on terrain example – Simulated Annealing vs Greedy Algorithms The ball is initially placed at a random position on the terrain. From the current position, the ball should be fired such that it can only move one step left or right.What algorithm should we follow for the ball to finally settle at the lowest point on the terrain?

Ball on terrain example – SA vs Greedy Algorithms

Applications Circuit partitioning and placement. Strategy scheduling for capital products with complex product structure. Umpire scheduling in US Open Tennis tournament! Event-based learning situations.

Jigsaw puzzles – Intuitive usage of Simulated Annealing Given a jigsaw puzzle such that one has to obtain the final shape using all pieces together. Starting with a random configuration, the human brain unconditionally chooses certain moves that tend to the solution. However, certain moves that may or may not lead to the solution are accepted or rejected with a certain small probability. The final shape is obtained as a result of a large number of iterations.

Conclusions Simulated Annealing algorithms are usually better than greedy algorithms, when it comes to problems that have numerous locally optimum solutions. Simulated Annealing is not the best solution to circuit partitioning or placement. Network flow approach to solving these problems functions much faster. Simulated Annealing guarantees a convergence upon running sufficiently large number of iterations.

Thank You!