11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 1 Evaluation of the Oxygen-Induced Zircaloy Embrittlement.

Slides:



Advertisements
Similar presentations
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft M. Steinbrück, FZK/IMF-I 11th Int. QUENCH Workshop, Karlsruhe, October 25-27, Oxidation.
Advertisements

25-27/10/2005, 1 Laboratory for Thermal Hydraulics Nuclear Energy and Safety 11th QUENCH Workshop, FZ Karlsruhe Calculational Support for the QUENCH-10.
Fourier’s Law and the Heat Equation
Modeling of the Current Distribution in Aluminum Anodization Rohan Akolkar and Uziel Landau Department of Chemical Engineering, CWRU, Cleveland OH
INRNE-BAS MELCOR Pre -Test Calculation of Boil-off test at Quench facility 11th International QUENCH Workshop Forschungszentrum Karlsruhe (FZK), October.
Numerical modeling example A simple s teel reheat furnace model – pg Reheat furnace Hot steel slabRolling mill Final product.
Chapter 2 Introduction to Heat Transfer
DICTRA Mobility Database for Zr alloys C. Toffolon-Masclet, C. Desgranges and J.C. Brachet CEA Saclay, France C. Toffolon-Masclet et al., CALPHAD XLI,
Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor Technology 11 th International QUENCH Workshop Karlsruhe,
1 Interpretation of Melt Oxidation Observations in QUENCH-09 test M.S. Veshchunov * Nuclear Safety Institute (IBRAE) Russian Academy of Sciences * Visiting.
INFLUENCE OF VERTICAL DISTRIBUTION OF ABSORBATE IN A GASEOUS PHASE ON GAS ABSORPTION BY FALLING LIQUID DROPLET T. Elperin, A. Fominykh and B. Krasovitov.
Dept of Chemical and Biomolecular Engineering CN2125E Heat and Mass Transfer Dr. Tong Yen Wah, E , (Mass Transfer, Radiation)
1 Application of the SVECHA/QUENCH code to the simulation of the QUENCH bundle tests Q-07 and Q-08 Presented by A.V.Palagin* Nuclear Safety Institute (IBRAE)
Chapter 2: Overall Heat Transfer Coefficient
1 Technical Basis for Revising 50.46(b) ECCS Acceptance Criteria Regulatory Information Conference March 12, 2009 Ralph Meyer Division of Systems Analysis.
Internal Convection: Fully Developed Flow
Ground-Water Flow and Solute Transport for the PHAST Simulator Ken Kipp and David Parkhurst.
Analysis of Simple Cases in Heat Transfer P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Gaining Experience !!!
23 October 2005MICE Meeting at RAL1 MICE Tracker Magnets, 4 K Coolers, and Magnet Coupling during a Quench Michael A. Green Lawrence Berkeley Laboratory.
Mathematical Modeling of Inclusion Dissolution Processes: The GROW Code Ernesto Gutierrez-Miravete Rensselaer at Hartford Brice Cassenti United Technologies.
Modeling the Survival of Hard- Alpha Inclusions in Titanium Ernesto Gutierrez-Miravete, Rensselaer at Hartford Tony Giamei, Belcan Indresh Padmonkar, Rensselaer.
CHE/ME 109 Heat Transfer in Electronics LECTURE 12 – MULTI- DIMENSIONAL NUMERICAL MODELS.
HYDRUS_1D Sensitivity Analysis Limin Yang Department of Biological Engineering Sciences Washington State University.
Session III: Computational Modelling of Solidification Processing Analytical Models of Solidification Phenomena V. Voller QUESTION: As models of solidification.
CHE/ME 109 Heat Transfer in Electronics LECTURE 8 – SPECIFIC CONDUCTION MODELS.
LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
1 MODELING DT VAPORIZATION AND MELTING IN A DIRECT DRIVE TARGET B. R. Christensen, A. R. Raffray, and M. S. Tillack Mechanical and Aerospace Engineering.
CHAPTER 8 APPROXIMATE SOLUTIONS THE INTEGRAL METHOD
CHE/ME 109 Heat Transfer in Electronics LECTURE 5 – GENERAL HEAT CONDUCTION EQUATION.
IRSN Views on the R & D Needs and Strategy Towards a Revision of LOCA Acceptance Criteria in France Michel SCHWARZ, Claude GRANDJEAN, François BARRE,
Heat Transfer in Structures
Non stationary heat transfer at ceramic pots firing Janna Mateeva, MP 0053 Department Of Material Science And Engineering Finite Element Method.
An Industry Technical Position On LOCA Rulemaking 21 st Regulatory Information Conference Rockville, MD March 12, 2009 Ken Yueh Electric Power Research.
Hungarian Academy of Sciences KFKI Atomic Energy Research Institute Oxidation and nitridization of Zr1%Nb Z. Hózer, M. Kunstár, L. Matus, N. Vér presented.
http :// Simulation of release of additives from mono- and multilayer packaging B. Roduit (1), Ch. Borgeat.
Calorimeter Analysis Tasks, July 2014 Revision B January 22, 2015.
A. Stern, J.C. Brachet, V. Maillot, L. Portier and A. Pineau Protocols allowing to obtain homogeneous monophased alpha and « prior beta » samples with.
Scavenging of Gaseous Pollutants by Falling Liquid Droplets in Inhomogeneous Atmosphere T. Elperin, A. Fominykh and B. Krasovitov Department of Mechanical.
1 Numerical study of the thermal behavior of an Nb 3 Sn high field magnet in He II Slawomir PIETROWICZ, Bertrand BAUDOUY CEA Saclay Irfu, SACM Gif-sur-Yvette.
高等輸送二 — 質傳 Lecture 2 Diffusion in concentrated solutions
IASFPWG – Seattle, WA Jet-A Vaporization Computer Model A Fortran Code Written by Prof. Polymeropolous of Rutgers University International Aircraft.
CHE 333 CLASS 20 DIFFUSION.
Development of EKINOX Model for the Prediction of Microstructural Evolutions in Zr Alloys during Oxydation L. Anagonou, C. Desgranges, C. Toffolon-Masclet,
ERMSAR 2012, Cologne March 21 – 23, 2012 Pretest Calculations of QUENCH-DEBRIS-0 Test Using SOCRAT/V3 Code V ASILIEV A.D. N UCLEAR S AFETY I NSTITUTE OF.
ERMSAR 2012, Cologne March 21 – 23, 2012 Main results of the ISTC Project #3876 “Thermo- Hydraulics of U-Zr-O Molten Pool under Oxidising Conditions in.
Results of First Stage of VVER Rod Simulator Quench Tests 11th International QUENCH Workshop Forschungszentrum Karlsruhe October 25-27, 2005 Presented.
Chapter 2: Heat Conduction Equation
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft FZK, H & HQWS11, KA, Analysis and Comparison of Experimental Data of QUENCH-07.
Internal Flow: Heat Transfer Correlations. Fully Developed Flow Laminar Flow in a Circular Tube: The local Nusselt number is a constant throughout the.
NUMERICAL SOLUTION FOR THE RADIATIVE HEAT DISTRIBUTION IN A CYLINDRICAL ENCLOSURE Cosmin Dan, Gilbert De Mey, Erik Dick University of Ghent, Belgium.
Counter-current flows in liquid-liquid boundary layers II. Mass transfer kinetics E. Horvath 1, E. Nagy 1, Chr. Boyadjiev 2, J. Gyenis 1 1 University.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
Anti project. F. Raffaelli. INFN CERN, April 05 th, Thermal Analysis of the Anti transportation. -Calculation of the manhole loads due to the valve.
Numerical Investigation of Flow Boiling in Double-layer Microchannel Heat Sink.
Modeling of heat and mass transfer during gas adsorption by aerosol particles in air pollution plumes T. Elperin1, A. Fominykh1, I. Katra2, and B. Krasovitov1.
Mass Transfer transport of one constituent from a region of higher concentration to that of a lower concentration.
Diffusion Thermally activated process
Fourier’s Law and the Heat Equation
One Dimensional Steady State Heat Conduction
Produktentwicklung und Maschinenelemente
Diffusion Mass Transfer
Spencer Ferguson and Natalie Siddoway April 7, 2014
Transient Heat Conduction
IRSN work and perspectives
Heat Transfer in common Configuration
Application of artificial neural network in materials research
Example-cylindrical coordinates
19th International QUENCH Workshop
First results of the bundle test QUENCH-L2 with M5® claddings
XI конференция по реакторному материаловедению, Россия,
Presentation transcript:

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 1 Evaluation of the Oxygen-Induced Zircaloy Embrittlement in ICARE/CATHARE Ladislav Belovsky ALIAS CZ s.r.o., Czech republic Presented at the 11 th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 2 Motivation for Development of a New Model (ZROB) ICARE/CATHARE: … applicable also for LOCA and beyond DBA analyses Acceptance criteria for ECCS for LWRs ( 10CFR50.46 ): Evaluation of post-quench cladding embrittlement (17% ECR by B-J since 1973). The 17% ECR criterion currently under revision by USNRC: –High burnup (hydrogen, pre-oxide). –New Zr-based alloys Exp. research indicates that embrittlement is a combined function of : –Oxygen content & distribution metal (beta phase) –Hydrogen content (& distribution ?) in metal Modeling of Zircaloy embrittlement in ICARE/CATHARE in two steps: –1. step: Oxygen-induced embrittlement (O-diffusion in beta phase) –2. step: Impact of hydrogen onto embrittlement (O-solubility & diffusion, hydrides, …)

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 3 Modeling Features & Assumptions ZROB receives beta layer boundaries from oxidation module (ZROX or UZRO) ZROB calculates 1D oxygen diffusion in beta layer >970 °C ( oxygen-free ZR in ZROX ): – Oxidizing surface :- Beta layer (ZR) always covered with O-stabilized alpha layer (ZRO). - Boundary concentration at ZR/ZRO: Zircaloy-Oxygen phase diagram – Non-oxidizing surface : Zero oxygen flux. –Uniform meshing, Cylindrical coordinates, Implicit finite-difference method, Gauss elimination. – Initial condition : Constant concentration profile (as-received material ). ZROB deduces from the oxygen concentration profile in the beta layer : 1.Thickness of beta layer with less than specified O-concentration ( …, 0.6, 0.7, … wt% O ). 2.Fractional saturation of beta layer. 3.  embrittled Zircaloy components after quenching (Chung-Kassner 1 and/or Pawel 2 criterion).

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 4 Diffusion Equation for Oxygen in ZR Layer Oxygen mass balance in i th segment: Oxygen fluxes at segment boundaries: J i = D i ·ΔC/ΔR CNCN C N-1 C i+1 CiCi C i-1 C2C2 C1C1 RNRN R N-1 R i+1 RiRi R i-1 R2R2 R1R1 rNrN r N-1 r i+1 riri r i-1 r2r2 r1r1 r N+1 i-th segment (regular) inner segment outer segment r C thickness of ZR layer J i+1 JiJi J N+1 J1J1 Example of two-sided oxidation

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 5 Oxygen diffusion coefficient in ZR layer > 970 °C (  -Zr) : D = 2.63·10 -6 exp(-28200/(1.987·T)) J. Nucl. Mat. 68 (1977) < 820 °C (  -Zr) : D = 1.32·10 -4 exp(-48200/(1.987·T)) J. Nucl. Mat. 67 (1977) °C

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 6 Oxygen solubility S O in ZR layer at ZR/ZRO interface >1007 °C : S O = exp(5.02 – 8220 / T[K]) [wt%] As-received Zircaloy (Chung-Kassner 3 ) °C : S O = 5.246·10 -3 ·(T[K]-1233) < 970 °C : S O = 0 T [  C ] Oxygen concentration [ at% ]  -Zr ZrO2  -Zr inner clad surface outer surface Phase diagram Zry-O SOSO ZRO ZR

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 7 Input & Output Data Input : – MACR xxxxUser name of the oxidizing Zircaloy macro-component (eg. CLAD1). – CINI Initial O-concentration in as-received Zircaloy: 0.1 wt% ( ) – COXX User defined critical O-concentration: 0.55 wt% ( ) – DTMX Max. length of internal sub-time step within global Δt: 0.5 s ( ) – NMAX Max. number of concentration points in ZR: 15 ( ) Output : – Fractional saturation of beta layer FBS = C AV / S O –C AV : Average concentration of oxygen in ZR layer –S O : Boundary concentration of oxygen in ZR (oxygen solubility) – Thickness THICXX within ZR with max. COXX [wt%] oxygen (another six variables THIC04 to THIC09 are automatically calculated for 0.4 to 0.9 wt%) –If embrittlement criterion fulfilled < 400 K (Chung-Kassner 1 or Pawel 2 ), component state  DISLOCAT.

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 8 Results: Numerical Against Analytical Solution Non-moving boundary diffusion problem in a slab, thickness l = 0.7 mm –Outer surface: oxidizing, boundary concentration from Chung-Kassner 3 correlation –Inner surface: zero oxygen flux –Initial O-conc.: 0.1 wt% (1000 wt ppm) –Constant temperature 1000 ° C, 1400 ° C Analytical solution (Carslaw & Jaeger 4 ) : –Oxygen concentration C(x, t) after t seconds at distance x from the surface: Numerical solution by ZROB : –Clad diameter 9 m (  slab) –Default input data Comparison : Good agreement (see next figures)

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 9 Results: Numerical Against Analytical Solution Cont’d Temperature 1000 °C Distance from the outer cladding surface [micron] Oxygen concentration [kg/m 3 ] Rel. difference (A - ZROB) / A [%] Analytical ZROB Rel. difference [%] 60 s 400 s 1140 s 60 s 400 s 1140 s

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 10 Results: Numerical Against Analytical Solution Cont’d Temperature 1400 °C Distance from the outer cladding surface [micron] Oxygen concentration [kg/m 3 ] Rel. difference (A - ZROB) / A [%] Analytical ZROB Rel. difference [%] 40 s 480 s 40 s

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 11 Results: Sensitivity to Meshing and Time step Temperature 1400 °C Number of concentration points NMAX [-] Max. relative difference [%] 40 s 480 s Internal sub-time step DTMX [ s ] Max. relative difference [%] 40 s 480 s

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 12 Results: Isothermal Oxidation (As-received Zircaloy) Temperature 1200 °C

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 13 Results: Isothermal Oxidation (As-received Zry) Cont’d Temperature 1300 °C

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 14 Results: Transient Oxidation (As-received Zry) Linear heat-up and cool-down between 800 and 1300 °C at 1 °C/s

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 15 Absorbed hydrogen C H increases the oxygen solubility S O in beta phase. CEA 5, 6 experimental data available for 1200 °C. Saturation of this effect at  600 wppm H. Billone ( ANL, 2005 ) 7 : Fit to CEA data (additive term to Chung-Kassner 3 correlation): S O = exp(5.02 – 8220 / T) + 0.6· (1 - exp[-0.006· C H ]) [wt%] T[K], C H [ wppm]. The increased solubility limit accelerates the filling of beta phase with oxygen. Oxygen Solubility in Hydrided Zircaloy °C

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 16 Beta layer poor in oxygen (~ < 0.6 wt% ) disappears faster in hydrided Zircaloy. FBS = C AV / C B, FBSA = (C AV – C INI ) / (C B - C INI ), where C INI … initial oxygen conc. in as received Zry. Results: Isothermal Oxidation (Hydrided Zircaloy)

11th International QUENCH Workshop, October 25-27, 2005, Forschungszentrum Karlsruhe, Germany 17 Conclusions Zry embrittlement module ZROB available since mid 2005 (ICARE2-V3mod1.4). –Applied embrittlement criteria: Chung-Kassner (1980) & Pawel (1974) … to be revised. Effect of hydrogen is under testing: –Increased oxygen solubility due to H:ready for implementation into ZROB –Increased oxygen diffusion coefficient : –Impact of hydrides onto embrittlement : References [ 1] H. M. Chung, T. F. Kassner: NUREG/CR-1344 (1980). [ 2] R. E. Pawel: Oxygen diffusion in beta Zircaloy during steam oxidation. J. Nucl. Mat. 50 (1974). [ 3] H. M. Chung, T. F. Kassner: Pseudobinary Zircaloy-Oxygen Phase Diagram. J. Nucl. Mat. 84 (1979) [ 4] H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids. Oxford, Clarendon Press, 2 nd edition (1959), p.100. [ 5] L. Portier et al.: 14 th Int. Symp. Zirconium Nucl. Ind., June 13-17, 2004, Stockholm, to be published by ASTM. [ 6] J-C. Brachet et al.: NRC Nucl. Safety Research Conf., Oct , 2004, Washington. [ 7] M. C. Billone: LOCA Embrittlement Criterion. Argonne National Laboratory (April 2005). … to be experimentally investigated