ABSOLUTE MOTION ANALYSIS (Section 16.4)

Slides:



Advertisements
Similar presentations
ABSOLUTE MOTION ANALYSIS
Advertisements

Instantaneous Center of Zero Velocity (IC) (Ani Dönme Merkezi)
PLANAR KINETICS OF A RIGID BODY: CONSERVATION OF ENERGY
“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU Today’s Objectives: Students will be able to: 1.Apply the three equations of motion for a.
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RIGID BODY MOTION: TRANSLATION & ROTATION
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4)
PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections )
INSTANTANEOUS CENTER (IC) OF ZERO VELOCITY (Section 16.6)
INSTANTANEOUS CENTER OF ZERO VELOCITY Today’s Objectives: Students will be able to: 1.Locate the instantaneous center of zero velocity. 2.Use the instantaneous.
Plane Kinematics of Rigid Bodies
ENGR 215 ~ Dynamics Sections 16.4
KINETIC ENERGY, WORK, PRINCIPLE OF WORK AND ENERGY
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
INSTANTANEOUS CENTER OF ZERO VELOCITY
C O B A w=2 rad/s 2 m a=4 rad/s2 PROBLEMS
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Kinematics of Rigid Bodies
RELATIVE MOTION ANALYSIS: ACCELERATION
Angular Momentum Linear Momentum. Always work from Principle! Ex: Work of gravity Principle: dW = F * ds Here: dW = - mg * dy mg y.
MAE 242 Dynamics – Section I Dr. Kostas Sierros.
MAE 242 Dynamics – Section I Dr. Kostas Sierros.
ABSOLUTE MOTION ANALYSIS Today’s Objective: Students will be able to: 1.Determine the velocity and acceleration of a rigid body undergoing general plane.
ENGR 214 Chapter 15 Kinematics of Rigid Bodies
MOTION RELATIVE TO ROTATING AXES
RELATIVE MOTION ANALYSIS: VELOCITY
PLANAR KINEMATICS OF A RIGID BODY
MOMENT OF INERTIA Today’s Objectives: Students will be able to: 1.Determine the mass moment of inertia of a rigid body or a system of rigid bodies. In-Class.
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today’s Objectives: Students will be able to: 1.Analyze the planar kinetics of a rigid body undergoing.
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today’s Objectives: Students will be able to: 1.Analyze the planar kinetics of a rigid body undergoing.
CYLINDRICAL COORDINATES
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objectives: Students will be able to:
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Today’s Objectives: Students will be able to: 1.Apply the three equations of motion for a rigid body in planar motion. 2.Analyze problems involving translational.
Today’s Objectives: Students will be able to: a)Apply the three equations of motion for a rigid body in planar motion. b)Analyze problems involving translational.
PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading.
RELATIVE MOTION ANALYSIS: VELOCITY
Today’s Objectives: Students will be able to: a) Resolve the acceleration of a point on a body into components of translation and rotation. b) Determine.
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
Today’s Objectives: Students will be able to: 1.Describe the velocity of a rigid body in terms of translation and rotation components. 2.Perform a relative-motion.
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objective: Students will be able to:
Chapter 17 Rigid Body Dynamics. Unconstrained Motion: 3 Equations for x, y, rotation.
DYNAMICS VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Tenth Edition Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P.
ABSOLUTE MOTION ANALYSIS Today’s Objective: Students will be able to: 1.Determine the velocity and acceleration of a rigid body undergoing general plane.
VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Seventh Edition Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objectives: Students will be able to:
INSTANTANEOUS CENTER (IC) OF ZERO VELOCITY (Section 16.6)
RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RELATIVE MOTION ANALYSIS: VELOCITY
KINEMATICS OF RIGID BODY
Kinematics of Rigid Bodies
INSTANTANEOUS CENTER OF ZERO VELOCITY
ABSOLUTE MOTION ANALYSIS
ROTATION ABOUT A FIXED AXIS
ROTATION ABOUT A FIXED AXIS
INSTANTANEOUS CENTER OF ZERO VELOCITY
PLANAR KINETIC EQUATIONS OF MOTION:
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RELATIVE MOTION ANALYSIS: VELOCITY
RELATIVE MOTION ANALYSIS: ACCELERATION
RELATIVE MOTION ANALYSIS: ACCELERATION
PLANAR KINETICS OF A RIGID BODY: CONSERVATION OF ENERGY
RIGID BODY MOTION (Section 16.1)
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RELATIVE MOTION ANALYSIS: VELOCITY
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Presentation transcript:

ABSOLUTE MOTION ANALYSIS (Section 16.4) Today’s Objective: Students will be able to determine the velocity and acceleration of a rigid body undergoing general plane motion using an absolute motion analysis. In-Class Activities: • Check homework, if any • Reading quiz • Applications • General Plane Motion • Concept quiz • Group problem solving • Attention quiz

1. A body subjected to general plane motion undergoes a/an READING QUIZ 1. A body subjected to general plane motion undergoes a/an A) translation. B) rotation. C) simultaneous translation and rotation. D) out of plane movement. Answers: 1. C 2. A 2. In general plane motion, if the rigid body is represented by a slab, the slab rotates A) about an axis perpendicular to the plane. B) about an axis parallel to the plane. C) about an axis lying in the plane. D) None of the above.

APPLICATIONS The position of the piston, x, can be defined as a function of the angular position of the crank, q. By differentiating x with respect to time, the velocity of the piston can be related to the angular velocity, w, of the crank. The stroke of the piston is defined as the total distance moved by the piston as the crank angle varies from 0 to 180°. How does the length of crank AB affect the stroke?

APPLICATIONS (continued) The rolling of a cylinder is an example of general plane motion. During this motion, the cylinder rotates clockwise while it translates to the right. Yes. Remember the concept of instanteous centers? Where is the IC for this situation and what does it tell you about the velocity of G? The position of the center, G, is related to the angular position, q, by sG = r q if the cylinder rolls without slipping. Can you relate the translational velocity of G and the angular velocity of the cylinder?

PROCEDURE FOR ANALYSIS The absolute motion analysis method (also called the parametric method) relates the position of a point, P, on a rigid body undergoing rectilinear motion to the angular position, q (parameter), of a line contained in the body. (Often this line is a link in a machine.) Once a relationship in the form of sP = f(q) is established, the velocity and acceleration of point P are obtained in terms of the angular velocity, w, and angular acceleration, a, of the rigid body by taking the first and second time derivatives of the position function. Usually the chain rule must be used when taking the derivatives of the position coordinate equation.

EXAMPLE 1 Given: Two slider blocks are connected by a rod of length 2 m. Also, vA = 8 m/s and aA = 0. Find: Angular velocity, w, and angular acceleration, a, of the rod when q = 60°. Plan: Choose a fixed reference point and define the position of the slider A in terms of the parameter q. Notice from the position vector of A, positive angular position q is measured clockwise.

By differentiating with respect to time, vA = -2 w sin q EXAMPLE 1 (continued) A reference sA q Solution: By geometry, sA = 2 cos q By differentiating with respect to time, vA = -2 w sin q Using q = 60° and vA = 8 m/s and solving for w: w = 8/(-2 sin 60°) = - 4.62 rad/s (The negative sign means the rod rotates counterclockwise as point A goes to the right.) Differentiating vA and solving for a, aA = -2a sin q – 2w2 cos q = 0 a = - w2/tan q = -12.32 rad/s2

EXAMPLE 2 Given: Crank AB rotates at a constant velocity of w = 150 rad/s Find: Velocity of P when q = 30° Plan: Define x as a function of q and differentiate with respect to time. xP = 0.2 cos q + (0.75)2 – (0.2 sin q)2 Solution: vP = -0.2w sin q + (0.5)[(0.75)2 – (0.2sin q)2]-0.5(-2)(0.2sin q)(0.2cos q)w vP = -0.2w sin q – [0.5(0.2)2sin2q w] / (0.75)2 – (0.2 sin q)2 At q = 30°, w = 150 rad/s and vP = -18.5 ft/s = 18.5 ft/s

CONCEPT QUIZ 1. If the position, s, is given as a function of angular position, q, by s = 10 sin 2q, the velocity, v, is A) 20 cos 2q B) 20 sin 2q C) 20 w cos 2q D) 20 w sin 2q 2. If s = 10 sin 2q, the acceleration, a, is A) 20 a sin 2q B) 20 a cos 2q - 40 w2 sin 2q C) 20 a cos 2q D) -40 a sin2 q

GROUP PROBLEM SOLVING Given: The w and a of the disk and the dimensions as shown. Find: The velocity and acceleration of cylinder B in terms of q. Plan: Relate s, the length of cable between A and C, to the angular position, q. The velocity of cylinder B is equal to the time rate of change of s.

GROUP PROBLEM SOLVING (continued) Solution: Law of cosines: s = (3)2 + (5)2 – 2(3)(5) cos q vB = (0.5)[34 – 30 cosq]-0.5(30 sinq)w vB = [15 sin q w]/ 34 – 30 cos q 30cosq)3/2 - (34 sinq) sinq)(30w (-0.5)(15w 30cosq 34 15a cosq (15w2 aB + = cosq)3/2 30 225w2sin2q cosq)0.5 a 15(w2cosq

2. If vA=10 m/s, determine the angular acceleration, a, when  = 30. ATTENTION QUIZ 1. The sliders shown below are confined to move in the horizontal and vertical slots. If vA=10 m/s, determine the connecting bar’s angular velocity when  = 30. A) 10 rad/s B) 10 rad/s C) 8.7 rad/s D) 8.7 rad/s Answers: 1. A 2. D (See example 1 for equations!) vA=10 m/s 2. If vA=10 m/s, determine the angular acceleration, a, when  = 30. A) 0 rad/s2 B) -50.2 rad/s2 C) -112 rad/s2 D) -173 rad/s2

End of the Lecture Let Learning Continue