Background and Observation Errors:

Slides:



Advertisements
Similar presentations
Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-Term forecasting of Typhoon Meranti (2010) at landfall Xin Li 1, Yuan Wang 1, Jie.
Advertisements

Ross Bannister Balance & Data Assimilation, ECMI, 30th June 2008 page 1 of 15 Balance and Data Assimilation Ross Bannister High Resolution Atmospheric.
Variational data assimilation and forecast error statistics
Page 1 of 26 A PV control variable Ross Bannister* Mike Cullen *Data Assimilation Research Centre, Univ. Reading, UK Met Office, Exeter, UK.
© Crown copyright Met Office Does the order of the horizontal and vertical transforms matter in the representation of an operational static covariance.
Data Assimilation Andrew Collard. Overview Introduction to Atmospheric Data Assimilation Control Variables Observations Background Error Covariance Summary.
Polly Smith, Alison Fowler, Amos Lawless School of Mathematical and Physical Sciences, University of Reading Exploring coupled data assimilation using.
Hybrid variational-ensemble data assimilation for the NCEP GFS Tom Hamill, for Jeff Whitaker NOAA Earth System Research Lab, Boulder, CO, USA
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
3.11 Adaptive Data Assimilation to Include Spatially Variable Observation Error Statistics Rod Frehlich University of Colorado, Boulder and RAL/NCAR Funded.
Balance in the EnKF Jeffrey D. Kepert Centre for Australian Weather and Climate Research A partnership between the Australian Bureau of Meteorology and.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
1/20 Accelerating minimizations in ensemble variational assimilation G. Desroziers, L. Berre Météo-France/CNRS (CNRM/GAME)
Background Tropopause theta composites Summary Development of TPVs is greatest in the Baffin Island vicinity in Canada, with development possibly having.
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Progress in Cloudy Microwave Satellite Data Assimilation at NCEP Andrew Collard 1, Emily Liu 4, Yanqiu Zhu 1, John Derber 2, Daryl Kleist 3, Rahul Mahajan.
UNBIASED ESTIAMTION OF ANALYSIS AND FORECAST ERROR VARIANCES
Bill Campbell and Liz Satterfield Naval Research Laboratory, Monterey CA Presented at the AMS Annual Meeting 4-8 January 2015 Phoenix, AZ Accounting for.
Background In deriving basic understanding of atmospheric phenomena, the analysis often revolves around discovering and exploiting relationships between.
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
A Regression Model for Ensemble Forecasts David Unger Climate Prediction Center.
Slide 1 Evaluation of observation impact and observation error covariance retuning Cristina Lupu, Carla Cardinali, Tony McNally ECMWF, Reading, UK WWOSC.
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
Comparison of hybrid ensemble/4D- Var and 4D-Var within the NAVDAS- AR data assimilation framework The 6th EnKF Workshop May 18th-22nd1 Presenter: David.
Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring Room A;
GSI Hybrid EnKF-3DVAR Upgrade Components –GPS RO bending angle rather than refractivity –Inclusion of compressibility factors for atmosphere –Retune SBUV.
Introduction to Data Assimilation: Lecture 2
ESA DA Projects Progress Meeting 2University of Reading Advanced Data Assimilation Methods WP2.1 Perform (ensemble) experiments to quantify model errors.
The Importance of Atmospheric Variability for Data Requirements, Data Assimilation, Forecast Errors, OSSEs and Verification Rod Frehlich and Robert Sharman.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Stephanie Guedj Florence Rabier Vincent Guidard Benjamin Ménétrier Observation error estimation in a convective-scale NWP system.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
GSI EXPERIMENTS FOR RUA REFLECTIVITY/CLOUD AND CONVENTIONAL OBSERVATIONS Ming Hu, Stan Benjamin, Steve Weygandt, David Dowell, Terra Ladwig, and Curtis.
Hybrid Variational/Ensemble Data Assimilation for the NCEP GFS Tom Hamill, for Jeff Whitaker NOAA Earth System Research Lab, Boulder, CO, USA
Development of an EnKF/Hybrid Data Assimilation System for Mesoscale Application with the Rapid Refresh Ming Hu 1,2, Yujie Pan 3, Kefeng Zhu 3, Xuguang.
A description of the tangent linear normal mode constraint (TLNMC) in GSI David Parrish.
HIRLAM 3/4D-Var developments Nils Gustafsson, SMHI.
Sensitivity Analysis of Mesoscale Forecasts from Large Ensembles of Randomly and Non-Randomly Perturbed Model Runs William Martin November 10, 2005.
Development of an EnKF to estimate CO 2 fluxes from realistic distributions of X CO2 Liang Feng, Paul Palmer
11 Background Error Daryl T. Kleist* National Monsoon Mission Scoping Workshop IITM, Pune, India April 2011.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
6/29/2010 Wan-Shu Wu1 GSI Tutorial 2010 Background and Observation Error Estimation and Tuning.
Covariance Modeling “Where America’s Climate, Weather, Ocean and Space Weather Services Begin” JCSDA Summer Colloquium July 27, 2015 Presented by John.
Deutscher Wetterdienst Vertical localization issues in LETKF Breogan Gomez, Andreas Rhodin, Hendrik Reich.
Ensemble Kalman Filter in a boundary layer 1D numerical model Samuel Rémy and Thierry Bergot (Météo-France) Workshop on ensemble methods in meteorology.
BE, gen_be and Single ob experiments Syed RH Rizvi National Center For Atmospheric Research NCAR/MMM, Boulder, CO-80307, USA Syed.
Local Predictability of the Performance of an Ensemble Forecast System Liz Satterfield and Istvan Szunyogh Texas A&M University, College Station, TX Third.
Use ensemble error covariance information in GRAPES 3DVAR Jiandong GONG, Ruichun WANG NWP center of CMA Oct 27, 2015.
July, 2009 WRF-Var Tutorial Syed RH Rizvi 0 WRFDA Background Error Estimation Syed RH Rizvi National Center For Atmospheric Research NCAR/ESSL/MMM, Boulder,
LWG, Destin (Fl) 27/1/2009 Observation representativeness error ECMWF model spectra Application to ADM sampling mode and Joint-OSSE.
An Examination Of Interesting Properties Regarding A Physics Ensemble 2012 WRF Users’ Workshop Nick P. Bassill June 28 th, 2012.
NCAR April 1 st 2003 Mesoscale and Microscale Meteorology Data Assimilation in AMPS Dale Barker S. Rizvi, and M. Duda MMM Division, NCAR
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Hybrid (3D-VAR /ETKF) Data Assimilation System
Examination of Observation Impacts Derived from OSEs and Adjoint Models Ron Gelaro and Yanqiu Zhu NASA Global Modeling and Assimilation Office Ricardo.
1 3D-Var assimilation of CHAMP measurements at the Met Office Sean Healy, Adrian Jupp and Christian Marquardt.
Feature Calibration Alignment for the WRF model WRF Users Workshop, 2012 Thomas Nehrkorn, Atmospheric and Environmental Research Inc. and Thomas Auligné,
Mesoscale Assimilation of Rain-Affected Observations Clark Amerault National Research Council Postdoctoral Associate - Naval Research Laboratory, Monterey,
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course Mar 2016.
2015 CIRA Training in Data Assimilation
Hybrid Data Assimilation
Vertical localization issues in LETKF
FSOI adapted for used with 4D-EnVar
Lidia Cucurull, NCEP/JCSDA
Project Team: Mark Buehner Cecilien Charette Bin He Peter Houtekamer
Hartmut Bösch and Sarah Dance
Sarah Dance DARC/University of Reading
Presentation transcript:

Background and Observation Errors: GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial

Background Errors Background error covariance Multivariate relationships Estimating/tuning background errors Balance Flow dependence 29-30 June 2011 GSI Tutorial

3DVAR Cost Function J : Penalty (Fit to background + Fit to observations + Constraints) x’ : Analysis increment (xa – xb) ; where xb is a background BVar : Background error covariance H : Observations (forward) operator R : Observation error covariance (Instrument + Representativeness) yo’ : Observation innovations/residuals (yo-Hxb) Jc : Constraints (physical quantities, balance/noise, etc.) 29-30 June 2011 GSI Tutorial

Background Error Covariance Vital for controlling amplitude and structure for correction to model first guess (background) Covariance matrix Controls influence distance Contains multivariate information Controls amplitude of correction to background For NWP (WRF, GFS, etc.), matrix is prohibitively large Many components are modeled or ignored Typically estimated a-priori, offline 29-30 June 2011 GSI Tutorial

Analysis (control) variables Analysis is often performed using non-model variables Background errors defined for analysis/control (not model) variables Control variables for GSI (NCEP GFS application): Streamfunction (Ψ) Unbalanced Velocity Potential (χunbalanced) Unbalanced Virtual Temperature (Tunbalanced) Unbalanced Surface Pressure (Psunbalanced) Relative Humidity Two options Ozone mixing ratio Cloud water mixing ratio Skin temperature Analyzed, but not passed onto GFS model 29-30 June 2011 GSI Tutorial

Multivariate Definition χ = χunbalanced + c Ψ T = Tunbalanced + G Ψ Ps = Psunbalanced + W Ψ Streamfunction is a key variable defines a large percentage of temperature, velocity potential and surface pressure increment G, W, c are empirical matrices (estimated with linear regression) to project stream function increment onto balanced component of other variables 29-30 June 2011 GSI Tutorial

Multivariate Variable Definition Tb = G Projection of  at vertical level 25 onto vertical profile of balanced temperature (G25) Percentage of full temperature variance explained by the balance projection 29-30 June 2011 GSI Tutorial

Multivariate Variable Definition b = c Projection of  onto balanced velocity potential (c) Percentage of full velocity potential variance explained by the balance projection 29-30 June 2011 GSI Tutorial

Multivariate Variable Definition Psb = w Projection of  onto balanced surface pressure (w) Percentage of full surface pressure variance explained by the balance projection 29-30 June 2011 GSI Tutorial

Testing Background Error Best way to test background error covariance is through single observation experiments (as shown in some previous plots) Easy to run within GSI, namelist options: &SETUP oneobtest=.true. &SINGLEOB_TEST maginnov=1.,magoberr=1.,oneob_type=‘u’,oblat=45.,oblon=180, obpres=300.,obdattime= 2010101312,obhourset=0., 29-30 June 2011 GSI Tutorial

Single zonal wind observation (1.0 ms-1 O-F and error) Multivariate Example Single zonal wind observation (1.0 ms-1 O-F and error) u increment (black, interval 0.1 ms-1 ) and T increment (color, interval 0.02K) from GSI 29-30 June 2011 GSI Tutorial

Moisture Variable Option 1 Option 2* Holm (2002) ECMWF Tech. Memo Pseudo-RH (univariate within inner loop) Option 2* Normalized relative humidity Multivariate with temperature and pressure Standard Deviation a function of background relative humidity Holm (2002) ECMWF Tech. Memo 29-30 June 2011 GSI Tutorial

Background Error Variance for RH Option 2 Figure 23 in Holm et al. (2002); ECMWF Tech Memo 29-30 June 2011 GSI Tutorial

Elements needed for GSI For each analysis variable Amplitude (variance) Recursive filter parameters Horizontal length scale (km, for Gaussian) Vertical length scale (grid units, for Gaussian) 3D variables only Additionally, balance coefficients G, W, and c from previous slides 29-30 June 2011 GSI Tutorial

Estimating (static) Background Error NMC Method* Lagged forecast pairs (i.e. 24/48 hr forecasts valid at same time, 12/24 hr lagged pairs, etc.) Assume: Linear error growth Easy to generate statistics from previously generated (operational) forecast pairs Ensemble Method Ensemble differences of forecasts Assume: Ensemble represents actual error Observation Method Difference between forecast and observations Difficulties: observation coverage and multivariate components 29-30 June 2011 GSI Tutorial

Amplitude (standard deviation) Function of latitude and height Larger in midlatitudes than in the tropics Larger in Southern Hemisphere than Northern Hemisphere NMC-estimated standard deviation for streamfunction, from lagged 24/48hr GFS forecasts 29-30 June 2011 GSI Tutorial

Amplitude (standard deviation) NMC-estimated standard deviation for unbalanced velocity potential, from lagged 24/48hr GFS forecasts NMC-estimated standard deviation for unbalanced virtual temperature, from lagged 24/48hr GFS forecasts 29-30 June 2011 GSI Tutorial

Amplitude (standard deviation) NMC-estimated standard deviation for pseudo RH (q-option 1), from lagged 24/48hr GFS forecasts NMC-estimated standard deviation for normalized pseudo RH (q-option 2), from lagged 24/48hr GFS forecasts 29-30 June 2011 GSI Tutorial

Length Scales NMC-estimated horizontal length scales (km) for streamfunction, from lagged 24/48hr GFS forecasts NMC-estimated vertical length scales (grid units) for streamfunction, from lagged 24/48hr GFS forecasts 29-30 June 2011 GSI Tutorial

Regional (8km NMM) Estimated NMC Method 29-30 June 2011 GSI Tutorial

Regional Scales Horizontal Length Scales Vertical Length Scales 29-30 June 2011 GSI Tutorial

Fat-tailed power spectrum 29-30 June 2011 GSI Tutorial

Fat-tailed Spectrum Surface pressure increment with homogeneous scales using single recursive filter 29-30 June 2011 GSI Tutorial

Fat-tailed Spectrum Surface pressure increment with inhomogeneous scales using single recursive filter, single scale (left) and multiple recursive filter: fat-tail (right) 29-30 June 2011 GSI Tutorial

Tuning Parameters GSI assumes binary fixed file with aforementioned variables Example: berror=$fixdir/global_berror.l64y578.f77 Anavinfo file contains information about control variables and their background error amplitude tuning weights control_vector:: !var level itracer as/tsfc_sdv an_amp0 source funcof sf 64 0 0.60 -1.0 state u,v vp 64 0 0.60 -1.0 state u,v ps 1 0 0.75 -1.0 state p3d t 64 0 0.75 -1.0 state tv q 64 1 0.75 -1.0 state q oz 64 1 0.75 -1.0 state oz sst 1 0 1.00 -1.0 state sst cw 64 1 1.00 -1.0 state cw stl 1 0 3.00 -1.0 motley sst sti 1 0 3.00 -1.0 motley sst 29-30 June 2011 GSI Tutorial

Tuning Parameters Length scale tuning controlled via GSI namelist &BKGERR hzscl = 1.7, 0.8, 0.5 hswgt = 0.45, 0.3, 0.25 vs=0.7 [separable from horizontal scales] Hzscl/vs/as are all multiplying factors (relative to contents of “berror” fixed file) Three scales specified for horizontal (along with corresponding relative weights, hswgt) 29-30 June 2011 GSI Tutorial

Tuning Example (Scales) Hzscl = 1.7, 0.8, 0.5 Hswgt = 0.45, 0.3, 0.25 Hzscl = 0.9, 0.4, 025 Hswgt = 0.45, 0.3, 0.25 500 hPa temperature increment (K) from a single temperature observation utilizing GFS default (left) and tuned (smaller scales) error statistics. 29-30 June 2011 GSI Tutorial

Tuning Example (Weights) Hzscl = 1.7, 0.8, 0.5 Hswgt = 0.45, 0.3, 0.25 Hzscl = 1.7, 0.8, 0.5 Hswgt = 0.1, 0.3, 0.6 500 hPa temperature increment (K) from a single temperature observation utilizing GFS default (left) and tuned (weights for scales) error statistics. 29-30 June 2011 GSI Tutorial

Tuning Example (ozone) Ozone analysis increment (mixing ratio) utilizing default (left) and tuned (larger scales) error statistics. 29-30 June 2011 GSI Tutorial

Balance/Noise In addition to statistically derived matrices, an optional (incremental) normal mode operator exists Not (yet) working well for regional applications Operational in global application (GFS/GDAS) C = Correction from incremental normal mode initialization (NMI) represents correction to analysis increment that filters out the unwanted projection onto fast modes No change necessary for B in this formulation 29-30 June 2011 GSI Tutorial

C=[I-DFT]x’ Practical Considerations: T n x n F m x n D n x m Dry, adiabatic tendency model Projection onto m gravity modes m-2d shallow water problems Correction matrix to reduce gravity mode Tendencies Spherical harmonics used for period cutoff Practical Considerations: C is operating on x’ only, and is the tangent linear of NNMI operator Only need one iteration in practice for good results Adjoint of each procedure needed as part of variational procedure 29-30 June 2011 GSI Tutorial

Noise/Balance Control Substantial increase without constraint Zonal-average surface pressure tendency for background (green), unconstrained GSI analysis (red), and GSI analysis with TLNMC (purple). 29-30 June 2011 GSI Tutorial

Example: Impact of Constraint Magnitude of TLNMC correction is small TLNMC adds flow dependence even when using same isotropic B Isotropic response Flow dependence added 500 hPa temperature increment (right) and analysis difference (left, along with background geopotential height) valid at 12Z 09 October 2007 for a single 500 hPa temperature observation (1K O-F and observation error) 29-30 June 2011 GSI Tutorial

Single observation test (T observation) U wind Ageostrophic U wind From multivariate B TLNMC corrects Smaller ageostrophic component Cross section of zonal wind increment (and analysis difference) valid at 12Z 09 October 2007 for a single 500 hPa temperature observation (1K O-F and observation error) 29-30 June 2011 GSI Tutorial

Adding Flow Dependence One motivation for GSI was to permit flow dependent variability in background error Take advantage of FGAT (guess at multiple times) to modify variances based on 9h-3h differences Variance increased in regions of large tendency Variance decreased in regions of small tendency Global mean variance ~ preserved Perform reweighting on streamfunction, velocity potential, virtual temperature, and surface pressure only Currently global only, but simple algorithm that could easily be adapted for any application 29-30 June 2011 GSI Tutorial

Variance Reweighting Surface pressure background error standard deviation fields with flow dependent re-scaling without re-scaling Valid: 00 UTC November 2007 29-30 June 2011 GSI Tutorial

Variance Reweighting Although flow-dependent variances are used, confined to be a rescaling of fixed estimate based on time tendencies No cross-variable or length scale information used Does not necessarily capture ‘errors of the day’ Plots valid 00 UTC 12 September 2008 29-30 June 2011 GSI Tutorial

Hybrid Variational-Ensemble Incorporate ensemble perturbations directly into variational cost function through extended control variable Lorenc (2003), Buehner (2005), Wang et. al. (2007), etc. bf & be: weighting coefficients for fixed and ensemble covariance respectively xt: (total increment) sum of increment from fixed/static B (xf) and ensemble B an: extended control variable; :ensemble perturbations L: correlation matrix [localization on ensemble perturbations] **2:30 GSI/ETKF Regional Hybrid Data Assimilation - Arthur Mizzi (MMM/NCAR)** 29-30 June 2011 GSI Tutorial

Observation Errors Overview Adaptive Tuning 29-30 June 2011 GSI Tutorial

3DVAR Cost Function J : Penalty (Fit to background + Fit to observations + Constraints) x’ : Analysis increment (xa – xb) ; where xb is a background BVar : Background error covariance H : Observations (forward) operator R : Observation error covariance (Instrument + Representativeness) Almost always assumed to be diagonal yo’ : Observation innovations/residuals (yo-Hxb) Jc : Constraints (physical quantities, balance/noise, etc.) 29-30 June 2011 GSI Tutorial

Tuning Observation errors contain two parts Instrument error Representativeness error In general, tune the observation errors so that they are about the same as the background fit to the data In practice, observation errors and background errors can not be tuned independently 29-30 June 2011 GSI Tutorial

Adaptive tuning Talagrand (1997) on E[J(xa)] Desroziers & Ivanov (2001) E[Jo]= ½ Tr ( I – HK) E[Jb]= ½ Tr (KH) K is Kalman gain matrix H is linearlized observation forward operator Chapnik et al.(2004) robust even when B is incorrectly specified 29-30 June 2011 GSI Tutorial

Adaptive tuning Tuning Procedure: Where e b and e o are background and observation error weighting parameters Where x is a random number with standard normal distribution (mean:0, variance:1) 29-30 June 2011 GSI Tutorial

Adaptive tuning 1) &SETUP oberror_tune=.true. 2) If Global mode: &OBSQC oberrflg=.true. (Regional mode: oberrflg=.true. is default) Note: GSI does not produce a ‘valid analysis’ under the setup Aside: Perturbed observations option can also be used to estimate background error tuning (ensemble generation)! 29-30 June 2011 GSI Tutorial

Adaptive Tuning 29-30 June 2011 GSI Tutorial

Alternative: Monitoring Observations from Cycled Experiment 1. Calculate the covariance of observation minus background (O- B) and observation minus analysis (O-A) in observation space (O-B)*(O-B) , (O-A)*(O-A), (O-A)*(O-B), (A-B)*(O-B) 2. Compare the adjusted observation errors in the analysis with original errors 3. Calculate the observation penalty ((o-b)/r)**2) 4. Examine the observation regions 29-30 June 2011 GSI Tutorial

Summary Background error covariance Observation error covariance Vital to any data assimilation system Computational considerations Recent move toward fully flow-dependent, ensemble based (hybrid) methods Observation error covariance Typically assumed to be diagonal Methods for estimating variance are well established in the literature Experience has shown that despite all of the nice theory, error estimation and tuning involves a lot of trial and error 29-30 June 2011 GSI Tutorial