WHITE – Achieving Fair Bandwidth Allocation with Priority Dropping Based on Round Trip Time Name : Choong-Soo Lee Advisors : Mark Claypool, Robert Kinicki.

Slides:



Advertisements
Similar presentations
Using Edge-To-Edge Feedback Control to Make Assured Service More Assured in DiffServ Networks K.R.R.Kumar, A.L.Ananda, Lillykutty Jacob Centre for Internet.
Advertisements

Computer Networking Lecture 20 – Queue Management and QoS.
RED Enhancement Algorithms By Alina Naimark. Presented Approaches Flow Random Early Drop - FRED By Dong Lin and Robert Morris Sabilized Random Early Drop.
CSIT560 Internet Infrastructure: Switches and Routers Active Queue Management Presented By: Gary Po, Henry Hui and Kenny Chong.
Playback-buffer Equalization For Streaming Media Using Stateless Transport Prioritization By Wai-tian Tan, Weidong Cui and John G. Apostolopoulos Presented.
CS 268: Lecture 8 Router Support for Congestion Control Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences.
CS 4700 / CS 5700 Network Fundamentals Lecture 12: Router-Aided Congestion Control (Drop it like it’s hot) Revised 3/18/13.
Ion Stoica, Scott Shenker, and Hui Zhang SIGCOMM’98, Vancouver, August 1998 subsequently IEEE/ACM Transactions on Networking 11(1), 2003, pp Presented.
Max Min Fairness How define fairness? “ Any session is entitled to as much network use as is any other ” ….unless some sessions can use more without hurting.
XCP: Congestion Control for High Bandwidth-Delay Product Network Dina Katabi, Mark Handley and Charlie Rohrs Presented by Ao-Jan Su.
1 Core Stateless Fair Queueing Ion Stoica Hui Zhang Scott Shenker CMU CMU Xerox PARC CMU CMU Xerox PARC.
1 Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks Core-Stateless Fair Queueing:
The War Between Mice and Elephants Presented By Eric Wang Liang Guo and Ibrahim Matta Boston University ICNP
Advanced Computer Networks: RED 1 Random Early Detection Gateways for Congestion Avoidance * Sally Floyd and Van Jacobson, IEEE Transactions on Networking,
ISCC2002 July 4, Adaptive Explicit Congestion Notification (AECN) Zici Zheng and Robert Kinicki Worcester Polytechnic Institute Computer Science.
Networks: Congestion Control1 Congestion Control.
Proportional Bandwidth Allocation in DiffServ Networks Usman Raza Chohan
Diffusion Mechanisms for Active Queue Management Department of Electrical and Computer Engineering University of Delaware May 19th / 2004 Rafael Nunez.
Low Delay Marking for TCP in Wireless Ad Hoc Networks Choong-Soo Lee, Mingzhe Li Emmanuel Agu, Mark Claypool, Robert Kinicki Worcester Polytechnic Institute.
EE689 Lecture 5 Review of last lecture More on HPF RED.
Achieving End-to-End Fairness in Wireless Networks Ananth Rao Ion Stoica OASIS Retreat, Jul 2005.
1 Traffic Sensitive Quality of Service Controller Masters Thesis Submitted by :Abhishek Kumar Advisors: Prof Mark Claypool Prof Robert Kinicki Reader:
1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking, Vol.1, No. 4, (Aug 1993), pp
Traffic Sensitive Active Queue Management - Mark Claypool, Robert Kinicki, Abhishek Kumar Dept. of Computer Science Worcester Polytechnic Institute Presenter.
1 Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks Ion Stoica,Scott Shenker, and Hui Zhang SIGCOMM’99,
A Real-Time Video Multicast Architecture for Assured Forwarding Services Ashraf Matrawy, Ioannis Lambadaris IEEE TRANSACTIONS ON MULTIMEDIA, AUGUST 2005.
1 Emulating AQM from End Hosts Presenters: Syed Zaidi Ivor Rodrigues.
Active Queue Management Rong Pan Cisco System EE384y Spring Quarter 2006.
Computer Networking Lecture 17 – Queue Management As usual: Thanks to Srini Seshan and Dave Anderson.
Random Early Detection Gateways for Congestion Avoidance
1 Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks Ion Stoica,Scott Shenker, and Hui Zhang SIGCOMM’99,
Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs.
Core Stateless Fair Queueing Stoica, Shanker and Zhang - SIGCOMM 98 Rigorous fair Queueing requires per flow state: too costly in high speed core routers.
Rafael C. Nunez - Gonzalo R. Arce Department of Electrical and Computer Engineering University of Delaware May 19 th, 2005 Diffusion Marking Mechanisms.
Diffusion Mechanisms for Active Queue Management Department of Electrical and Computer Engineering University of Delaware Aug 19th / 2004 Rafael Nunez.
Diffusion Mechanisms for Active Queue Management Department of Electrical and Computer Engineering University of Delaware May 19th / 2004 Rafael Nunez.
Lightweight Active Router-Queue Management for Multimedia Networking M. Parris, K. Jeffay, and F.D. Smith Department of Computer Science University of.
UCB Improvements in Core-Stateless Fair Queueing (CSFQ) Ling Huang U.C. Berkeley cml.me.berkeley.edu/~hlion.
Ns Simulation Final presentation Stella Pantofel Igor Berman Michael Halperin
February 7, 2003BU Computer Science Colloquium Crimson - Traffic Aware Active Queue Management Mark Claypool CS Department Worcester Polytechnic Institute.
Diffusion Early Marking Department of Electrical and Computer Engineering University of Delaware May / 2004 Rafael Nunez Gonzalo Arce.
Advanced Computer Networks : RED 1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking,
Core Stateless Fair Queueing Stoica, Shanker and Zhang - SIGCOMM 98 Fair Queueing requires per flow state: too costly in high speed core routers Yet, some.
1 Queue Management Hamed Khanmirza Principles of Networking University of Tehran.
Advance Computer Networking L-5 TCP & Routers Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan.
ACN: CSFQ1 CSFQ Core-Stateless Fair Queueing Presented by Nagaraj Shirali Choong-Soo Lee ACN: CSFQ1.
CA-RTO: A Contention- Adaptive Retransmission Timeout I. Psaras, V. Tsaoussidis, L. Mamatas Demokritos University of Thrace, Xanthi, Greece This study.
Advance Computer Networking L-6 TCP & Routers Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan.
Advanced Computer Networking
ACN: RED paper1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking, Vol.1, No. 4, (Aug.
Worcester Polytechnic Insitute, Worcester, MA, USA1 Traffic Sensitive Active Queue Management for Improved Multimedia Streaming Authors: Vishal Phirke,
Presented by: Peng Wang EE Department University of Delaware A Probabilistic Approach for Achieving Fair Bandwidth Allocation in CSFQ.
Queueing and Active Queue Management Aditya Akella 02/26/2007.
The Impact of Active Queue Management on Multimedia Congestion Control Wu-chi Feng Ohio State University.
Packet Scheduling and Buffer Management Switches S.Keshav: “ An Engineering Approach to Networking”
15744 Course Project1 Evaluation of Queue Management Algorithms Ningning Hu, Liu Ren, Jichuan Chang 30 April 2001.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
We used ns-2 network simulator [5] to evaluate RED-DT and compare its performance to RED [1], FRED [2], LQD [3], and CHOKe [4]. All simulation scenarios.
1 Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks Core-Stateless Fair Queueing:
ECEN 619, Internet Protocols and Modeling Prof. Xi Zhang Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions.
Congestion Control for High Bandwidth-Delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Presented by Yufei Chen.
Corelite Architecture: Achieving Rated Weight Fairness
On Queuing, Marking, and Dropping
Congestion Control and Resource Allocation
Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks Ion Stoica, Scott Shenker, and Hui.
Random Early Detection Gateways for Congestion Avoidance
Advance Computer Networking
Max Min Fairness How define fairness?
Advance Computer Networking
Congestion Control and Resource Allocation
Presentation transcript:

WHITE – Achieving Fair Bandwidth Allocation with Priority Dropping Based on Round Trip Time Name : Choong-Soo Lee Advisors : Mark Claypool, Robert Kinicki Reader : Craig Wills Date: March 25, 2002

Outline Introduction Related Work Approach Evaluation Conclusion

Introduction Current internet uses routers with droptail queue management Droptail introduces the problem of global synchronization There are many active queue managements proposed but most of them are concerned with overall throughput and delay but not with fairness Flows are not homogeneous but heterogeneous Robust flows vs. Fragile flows

Related Work Random Early Detection (RED) Flow RED (FRED) Core-Stateless Fair Queuing (CSFQ) Deficit Round-Robin (DRR)

RED [FJ93] Based on average queue size min th max th queue size 0 1 max_p MinthMaxth

FRED [LM97] Modification to RED Maintains per-flow state information

CSFQ [SSZ98] Rate-based Active Queue Management Distinguishes between edge and core routers Edge routers label packets Core routers use these labels to treat packets fairly Estimates fair share and uses it to drop packets

DRR Implementation of Fair Queuing Maintains per-flow state information

Overview Goals Achieve fair allocation close to Fair Queuing and comparable or better than RED, FRED and CSFQ under most scenarios. Reduce complexity by not having to maintain per flow state Per Packet No Per Packet Per FlowNo Per Flow DRRFREDWHITE CSFQ RED

Outline Introduction Approach Round Trip Time at the Edge Average Round Trip Time at the Router Drop Probability Based on Round Trip Times Evaluation Conclusion

Approach Modification to RED Adjusts max_p per packet Supports both dropping and marking of packets Dropping vs. Marking Dropping WHITE : Chardonnay Marking WHITE : Chablis Round Trip Time at the Edge Average Round Trip Time at the Router Drop Probability Based on Round Trip Times

Round Trip Time at the Edge Edge Hint Packets get labeled with additional information We want the lowest RTT as our hint Modification to TCP-Reno with TCP-Vegas RTT Computation 4-17 bits in the IP header available for additional information if no fragmentation [SZ99]

Average Round Trip Time at the Router Now that we have the RTT edge hint, RTTs are exponentially weighted (R average ) at the router Due to high fluctuation of R average, we use extra steps to compute stabilized value of RTT (R formula ) How long it has been out of  12.5ms

Drop Probability Based on Round Trip Time Now, we want to use RTT edge hint and average RTT at the router to compute drop probability TCP-Friendly Formula [PFK98] Simplify T 1 = T 2

Drop Probability Based on Round Trip Time

For Chardonnay, 0.71 corresponds to   robust) and 1.58 to  fragile). For Chablis, 1.58 corresponds to both   robust) and  fragile). However, simulation results showed that values of (0.65, 1.4) worked the best for Chardonnay and (1.6, 1.4) for Chablis.

min th max th queue size 0 1 max_p WHITE Algorithm q ave robust flow fragile flow

Outline Introduction Approach Evaluation Setup Experiments Chardonnay vs. Chablis Conclusion

Setup Network Simulator 2 (NS-2) was used to run all the simulations. Modification to source code to include RTT edge hints and to implement WHITE. We ran 6 experiments with RED, FRED, CSFQ, DRR, Chardonnay and Chablis

Setup N0N0 N1N1 N2N2 N 29 RD Queue Size: Mbps, 5ms 5 Mbps RED/FRED min th :10 max th :30 w q : max_p:0.1 WHITE (Chardonnay, Chablis) min th :10 max th :30 W q : max_p:0.1  :0.65, 1.6  :1.4, 1.4 CSFQ K:100ms K  :100ms K c :100ms

Experiments Uniformly Distributed Latencies (Exp1) Round trip latencies from sources were 20ms, 30ms, 40ms, …, 310ms. Balanced Clustered Latencies (Exp2) Unbalanced Latencies (Exp3, Exp4) Dynamic Latencies (Exp5, Exp6)

Uniformly Distributed Latencies

Experiments Uniformly Distributed Latencies (Exp1) Balanced Clustered Latencies (Exp2) Unbalanced Latencies 1 flow with 20ms round trip latency and 29 flows with 200ms round trip latency (Exp3) 1 flow with 200ms round trip latency and 29 flows with 20ms round trip latency (Exp4) Dynamic Latencies (Exp5, Exp6)

Unbalanced Latencies: 1 Robust vs. 29 Fragile

Unbalanced Latencies: 1 Fragile vs. 29 Robust

Experiments Uniformly Distributed Latencies (Exp1) Balanced Clustered Latencies (Exp2) Unbalanced Latencies (Exp3, Exp4) Dynamic Latencies 10 flows with 50ms round trip latency, 10 flows with 100ms round trip latency and 10 flows with 200ms round trip latency (Exp6)

Dynamic Latencies Robust Average Fragile 0s60s90s120s30s ABCD

Dynamic Latencies

Overall Comparison

Chardonnay (Dropping) vs. Chablis (Marking)

ExperimentChardonnayChablis Drop (%)Goodput (Mbps) Drop (%)Goodput (Mbps)

Outline Introduction Approach Evaluation Conclusion Future Work

Conclusion Performance of Chardonnay and Chablis is better than RED, FRED and CSFQ and comparable to DRR RTT edge hints can be used to approximate DRR’s performance without the complexity of maintaining per-flow state information Marking performed better Less drops Better goodput

Future Work Current version of WHITE does not support any non-responsive flows such as UDP flows Adaptive mechanism is necessary to support much more flows than those in simulations