Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs 805-893-3244, 805-893-5705 fax The 11th International Symposium on.

Slides:



Advertisements
Similar presentations
RF and AMS Technologies for Wireless Communications Working Group International Technology Roadmap for Semiconductors Radio Frequency and Analog/Mixed-Signal.
Advertisements

CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
TowerJazz High Performance SiGe BiCMOS processes
40Gbit/s Coherent Optical Receiver Using a Costas Loop
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Evaluation of GaAs Power MESFET for Wireless Communication
Device Research Conference 2011
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,
Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Asia-Pacific Microwave Conference, November 8th, Seoul Mark.
Scaling of High Frequency III-V Transistors , fax Short Course, 2009 Conference on InP and Related Materials,
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
1 Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain 1 H.C. Park, 1 M. Piels, 2 E. Bloch, 1 M. Lu, 1 A. Sivanathan, 3.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Student Paper Finalist TU3B-1
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
Nanometer InP Electron Devices for VLSI and THz Applications
III-V HBT and (MOS) HEMT scaling
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications Nick Krajewski CMPE /16/2005.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InP HBT Digital ICs and MMICs in the GHz band , fax Mark Rodwell University of California, Santa.
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
50-500GHz Wireless Technologies: Transistors, ICs, and Systems
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Prospects for Multi-THz III-V Transistors
Ultra-low Power Components
A High-Dynamic-Range W-band
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology
Lower Limits To Specific Contact Resistivity
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
Presentation transcript:

Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) Mark Rodwell University of California, Santa Barbara Coauthors E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard University of California, Santa Barbara E. Lind Lund University Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, Richard Pierson, B. Brar Teledyne Scientific Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

UCSB High-Frequency Electronics Group THz InP Bipolar Transistors. Ultra high frequency III-V ICs sub-mm-wave ICs GHz digital logic GHz Silicon ICs mm-waves: MIMO links, arrays, sensor networks fiber optics III-V CMOS for Si VLSI InGaAs-channel MOSFETs for sub-22-nm scaling

Multi-THz Transistors Are Coming InP Bipolars: 250 nm generation: → 780 GHz f max, 400 GHz f , 5 V BV CEO 125 nm & 62 nm nodes → ~THz devices IBM IEDM '06: 65 nm SOI CMOS → 450 GHz f max, ~1 V operation Intel June '07: 45 nm / high-K / metal gate production 65 nm: ~250 GHz f max → continued rapid progress What applications for III-V bipolars ? What applications for mm-wave CMOS ?

THz InP vs. near-THz CMOS: different opportunities InP HBT: THz bandwidths, good breakdown, analog precision 340 GHz, 70 mW amplifiers (design) In future: 700 or 1000 GHz amplifiers ? & 200 GHz digital logic (design) In future: 450 GHz clock rate ? → fast blocks for microwave mixed-signal GHz gain-bandwidth op-amps→ low 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers? Z. Griffith M. Urteaga (Teledyne) Z. Griffith M. Jones (UCSB) J. Hacker (Teledyne)

THz InP vs. near-THz CMOS: different opportunities 65 / 45 / 33 / nm CMOS vast #s of very fast transistors... having low breakdown, high output conductance what NEW mm-wave applications will this enable ? massive monolithic mm-wave arrays → 1 Gb/s over ~1 km mm-wave MIMO comprehensive equalization of ~100 Gb/s wireless, wireline, optical links mm-wave imaging sensor networks

InP DHBTs: September nm 600nm 350 nm 250 nm

Bipolar Transistor Design

Bipolar Transistor Design: Scaling

Bipolar Transistor Scaling Laws parameterchange collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.414:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter contact resistancedecrease 4:1 current densityincrease 4:1 base contact resistivitydecrease 4:1 Changes required to double transistor bandwidth: Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

emitter nm width  m 2 access  base nm contact width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital 2:1 divider GHz InP Bipolar Transistor Scaling Roadmap industryuniversity →industry university appears feasible maybe

512 nm InP DHBT Production DDS IC: 4500 HBTs20-40 GHz op-amps 500 nm mesa HBT 150 GHz M/S latches175 GHz amplifiers Laboratory Technology Teledyne / BAETeledyne / UCSB UCSBUCSB / Teledyne / GCS 500 nm sidewall HBT f  = 405 GHz f max = 392 GHz V br, ceo = 4 V Teledyne 20 GHz clock 53 dBm 2 GHz with 1 W dissipation ( Teledyne ) Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar V. Paidi

256 nm Generation InP DHBT 150 nm thick collector 70 nm thick collector 60 nm thick collector 200 GHz master-slave latch design 340 GHz, 70 mW amplifier design Z. Griffith, E. Lind, J. Hacker, M. Jones 4.7 dB Gain at 306 GHz. from one HBT

324 GHz Medium Power Amplifiers in 256 nm HBT ICs designed by Jon Hacker / Teledyne Teledyne 256 nm process flow- Hacker et al, 2008 IEEE MTT-S ~2 mW saturated output power

Can we make a 1 THz SiGe Bipolar Transistor ? emitter18nm width 1.2  m 2 access  base56nm contact width, 1.4  m 2 contact  collector 15 nm thick 125mA/  m 2 current density ??? V, breakdown f  1000 GHz f max 2000 GHz PAs1000 GHz digital480GHz (2:1 static divider metric) Assumes collector junction 3:1 wider than emitter. Assumes contacts 2:1 wider than junctions Simple physics clearly drives scaling transit times, C cb /I c → thinner layers, higher current density high power density → narrow junctions small junctions→ low resistance contacts Key challenge: Breakdown 15 nm collector → very low breakdown (also need better Ohmic contacts) Solutions Eliminating excess collector area would partly ease scaling

What Would You Do With a THz Transistor ? microwave ADCs and DACs more resolution & more bandwidth High-Performance 2-20 GHz Microwave Systems high excess transistor bandwidth + precision design --> high linear, highly precise microwave systems GHz imaging systems sub-mm-wave communications single-chip GHz spectrometers (gas detection) microwave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power

input power, dBm output power, dBm linear response 2-tone intermodulation increasing feedback mm-wave Op-Amps for Linear Microwave Amplification Reduce distortion with strong negative feedback R. Eden DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga measured GHz bandwidth measured 54 dBm 2 GHz new designs in fabrication simulated 56 dBm 2 GHz 300 GHz / 4 V InP HBT

What Would You Do With a THz Transistor ? microwave ADCs and DACs more resolution & more bandwidth High-Performance 2-20 GHz Microwave Systems high excess transistor bandwidth + precision design --> high linear, highly precise microwave systems GHz imaging systems sub-mm-wave communications single-chip GHz spectrometers (gas detection) microwave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power

150 GHz carrier, 100 Gbs/s QPSK radio: 30 cm antennas, 10 dBm power, fair weather→ 1 km range 150 & 250 GHz Bands for 100 Gb/s Radio ? GHz, GHz: enough bandwidth for 100 Gb/s QPSK Wiltse, 1997 IEEE APS-Symposium, sea level 4 km 9 km 150 GHz band: Expect ~10-20 dB/km attenuation for rain But, for > 300 GHz : expect >30 db/km from 90% humidity

mm-wave (60-80 GHz) MIMO → wireless at 40+ Gb/s rates ? 70 GHz, 1 km, 16 elements, 2 polarizations, 3.6 x 3.6 meter array, 2.5 GBaud QPSK → 160 Gb/s digital radio ?

mm-wave MIMO: 2-channel prototype, 60 GHz, 40 meters

mm-Wave & Sub-mm-Wave Wireless Links The ICs will soon make this possible SiGe BiCMOS: up to 150 GHz now, future uncertain Si CMOS: up to 150 GHz now, GHz soon, low output power InP HBT: up to 500 GHz now, up to 1000 GHz soon moderate to high power, moderate noise Propagation characteristics will determine applications Foul-Weather Attenuation, Highly Directional (LOS only) propagation Massive mm-wave IC complexity in future → aggressive system adaptations / corrections