12.1 Identifying the Substance of Genes

Slides:



Advertisements
Similar presentations
End Show Slide 1 of 37 Copyright Pearson Prentice Hall Biology.
Advertisements

End Show Slide 1 of 37 Copyright Pearson Prentice Hall Biology.
DNA. 12–1 DNA Griffith and Transformation I Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain.
Griffith and Transformation
1 Chapter 12 DNA & RNA DNA How do genes work? What are they made of? How do they determine characteristics of organisms? In the middle of the.
DNA 12-1.
12.1 Identifying the Substance of Genes
End Show Slide 1 of 37 Copyright Pearson Prentice Hall 12–1 DNA.
DNA Structure. Frederick Griffith In 1928, Frederick Griffith wanted to learn how certain types of bacteria produce pneumonia Griffith injected mice with.
DNA History and Structure History. Friedrich Miescher  Published in 1871  First to isolate and identify DNA and suggested its role in heredity.
12.1 Identifying the Substance of Genes
12-1 DNA.
EQ: How did the structure of DNA lead scientist to the function of the molecule?
DNA Chapter 12. First Question- Early 1900s What molecule carries genetic information?
Copyright Pearson Prentice Hall
DNA: The Blueprint of Life. DNA & Scientists Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain.
DNA: Deoxyribonucleic Acid. I. Molecule for Heredity A. Scientists needed a molecule that could carry 3 main functions: 1. Carry genes from generation.
What we’ve learned so far… Cells make proteins Genetic information is passed on through chromosomes Compacted DNA and proteins= chromosomes Genetic information.
DNA & RNA DNA.
12–1 DNA Photo credit: Jacob Halaska/Index Stock Imagery, Inc.
Chapter 12: DNA.
Slide 1 of 37 Copyright Pearson Prentice Hall Biology.
Chapter 12 DNA and RNA.
The Discovery of DNA. The DNA Revolution In 1928, Griffith discovered that a factor in heat-killed, disease causing bacteria can “ transform” harmless.
12.1 Identifying the Substance of Genes
12.1 Identifying the Substance of Genes. Lesson Overview Lesson Overview Identifying the Substance of Genes THINK ABOUT IT How do genes work? To answer.
Lesson Overview 12.2 The Structure of DNA.
Section 12-2: The structure of DNA
DNA Structure and Replication
Lesson Overview 12.2 The Structure of DNA.
12.1 Identifying the Substance of Genes
Lesson Overview 12.2 The Structure of DNA. The Components of DNA What are the chemical components of DNA? DNA is a nucleic acid made up of nucleotides.
NUCLEIC ACIDS Chapter 12 DNA and RNA. Where did we find Genes and who discovered them?  In 1928 Frederick Griffith tried to figure out how bacteria made.
Copyright Pearson Prentice Hall
End Show Slide 1 of 37 Biology Mr. Karns DNA. End Show Slide 2 of 37 12–1 DNA.
DNA & RNA Structure.
Lesson Overview 12.1 Identifying the Substance of Genes.
Biologist first had to discover the chemical nature of the genes.
End Show Slide 1 of 37 Copyright Pearson Prentice Hall 12–1 DNA.
12.2 The Structure of DNA 1)What are the chemical components of DNA? 2)What clues helped scientists solve the structure of DNA? 3)What does the double-helix.
Chapter #12 – DNA, RNA, & Protein Synthesis. I. DNA – experiments & discoveries A. Griffith and Transformation Frederick Griffith – British scientist.
Copyright Pearson Prentice Hall
Mr. Karns Biology DNA.
Lesson Overview 12.2 The Structure of DNA.
DNA: Deoxyribonucleic Acid
DNA: History of discovery of its Structure & Function
Lesson Overview 12.2 The Structure of DNA.
Lesson Overview 12.2 The Structure of DNA.
Chapter 12.1 DNA.
Lesson Overview 12.2 The Structure of DNA.
Lesson Overview 12.2 The Structure of DNA.
Lesson Overview 12.2 The Structure of DNA.
12.1 Identifying the Substance of Genes
Chapter 12-2 The Structure of DNA.
Deoxyribonucleic Acid
Copyright Pearson Prentice Hall
Lesson Overview 12.2 The Structure of DNA.
Griffith finds a ‘transforming principle.’
Lesson Overview 12.2 The Structure of DNA.
Copyright Pearson Prentice Hall
Lesson Overview 12.2 The Structure of DNA.
12.1 Identifying the Substance of Genes
Lesson Overview 12.2 The Structure of DNA.
Lesson Overview 12.2 The Structure of DNA.
Lesson Overview 12.2 The Structure of DNA Objectives:
Griffith finds a ‘transforming principle.’
Lesson: Structure of DNA Key Questions:
What are genes made of and how do they work?
Lesson Overview 12.2 The Structure of DNA.
Copyright Pearson Prentice Hall
Presentation transcript:

12.1 Identifying the Substance of Genes Lesson Overview 12.1 Identifying the Substance of Genes

Bacterial Transformation To truly understand genetics, scientists realized they had to discover the chemical nature of the gene. If the molecule that carries genetic information could be identified, it might be possible to understand how genes control the inherited characteristics of living things.

Griffith’s Experiments Griffith isolated two different strains of the same bacterial species. Both strains grew very well in culture plates in Griffith’s lab, but only one of the strains caused pneumonia. The discovery of the chemical nature of the gene began in 1928 with British scientist Frederick Griffith, who was trying to figure out how certain types of bacteria produce pneumonia. Griffith isolated two different strains of the same bacterial species. When Griffith injected mice with disease-causing bacteria, the mice developed pneumonia and died. When he injected mice with harmless bacteria, the mice stayed healthy. Perhaps the S-strain bacteria produced a toxin that made the mice sick? To find out, Griffith ran a series of experiments. Both strains grew very well in culture plates in Griffith’s lab, but only one of the strains caused pneumonia. The disease-causing bacteria (S strain) grew into smooth colonies on culture plates, whereas the harmless bacteria (R strain) produced colonies with rough edges.

Griffith’s Experiments When Griffith injected mice with disease-causing bacteria, the mice developed pneumonia and died. When he injected mice with harmless bacteria, the mice stayed healthy. Perhaps the S-strain bacteria produced a toxin that made the mice sick? To find out, Griffith ran a series of experiments.

Griffith’s Experiments First, Griffith took a culture of the S strain, heated the cells to kill them, and then injected the heat-killed bacteria into laboratory mice. The mice survived, suggesting that the cause of pneumonia was not a toxin from these disease-causing bacteria.

Griffith’s Experiments In Griffith’s next experiment, he mixed the heat-killed, S-strain bacteria with live, harmless bacteria from the R strain and injected the mixture into laboratory mice.   The injected mice developed pneumonia, and many died. The lungs of these mice were filled with the disease-causing bacteria. How could that happen if the S strain cells were dead?

Transformation He called this process transformation, because one type of bacteria had been changed permanently into another. Because the ability to cause disease was inherited by the offspring of the transformed bacteria, Griffith concluded that the transforming factor had to be a gene. Griffith reasoned that some chemical factor that could change harmless bacteria into disease-causing bacteria was transferred from the heat-killed cells of the S strain into the live cells of the R strain.

The Molecular Cause of Transformation Avery extracted a mixture of various molecules from the heat-killed bacteria and treated this mixture with enzymes that destroyed proteins, lipids, carbohydrates, and some other molecules, including the nucleic acid RNA. Transformation still occurred. A group of scientists at the Rockefeller Institute in New York, led by the Canadian biologist Oswald Avery, wanted to determine which molecule in the heat-killed bacteria was most important for transformation.

The Molecular Cause of Transformation Then they destroyed the DNA in the mixture and transformation did not occur. Therefore, DNA was the transforming factor. By observing bacterial transformation, Avery and other scientists discovered that the nucleic acid DNA stores and transmits genetic information from one generation of bacteria to the next.

Bacteriophages The kind of virus that infects bacteria is known as a bacteriophage, which means “bacteria eater.” A typical bacteriophage is shown. Several different scientists repeated Avery’s experiments. Alfred Hershey and Martha Chase performed the most important of the experiments relating to Avery’s discovery. Hershey and Chase studied viruses—nonliving particles that can infect living cells. When a bacteriophage enters a bacterium, it attaches to the surface of the bacterial cell and injects its genetic information into it. The viral genes act to produce many new bacteriophages, which gradually destroy the bacterium. When the cell splits open, hundreds of new viruses burst out.

The Hershey-Chase Experiment American scientists Alfred Hershey and Martha Chase studied a bacteriophage that was composed of a DNA core and a protein coat. They wanted to determine which part of the virus—the protein coat or the DNA core—entered the bacterial cell Hershey and Chase grew viruses in cultures containing radioactive isotopes of phosphorus-32 (P-32) sulfur-35 (S-35) Their results would either support or disprove Avery’s finding that genes were made of DNA. Since proteins contain almost no phosphorus and DNA contains no sulfur, these radioactive substances could be used as markers, enabling the scientists to tell which molecules actually entered the bacteria and carried the genetic information of the virus.

The Hershey-Chase Experiment Nearly all the radioactivity in the bacteria was from phosphorus P-32 , the marker found in DNA. Hershey and Chase concluded that the genetic material of the bacteriophage was DNA, not protein. Hershey and Chase’s experiment with bacteriophages confirmed Avery’s results, convincing many scientists that DNA was the genetic material found in genes—not just in viruses and bacteria, but in all living cells. The two scientists mixed the marked viruses with bacterial cells, waited a few minutes for the viruses to inject their genetic material, and then tested the bacteria for radioactivity.

The Role of DNA The DNA that makes up genes must be capable of storing, copying, and transmitting the genetic information in a cell. When a cell divides, each daughter cell must receive a complete copy of the genetic information. Careful sorting is especially important during the formation of reproductive cells in meiosis. The loss of any DNA during meiosis might mean a loss of valuable genetic information from one generation to the next.

Lesson Overview 12.2 The Structure of DNA

Nucleic Acids and Nucleotides Nucleic acids are long, slightly acidic molecules originally identified in cell nuclei. Nucleic acids are made up of nucleotides, linked together to form long chains. DNA’s nucleotides are made up of three basic components: a 5-carbon sugar called deoxyribose, a phosphate group, and a nitrogenous base.

Nucleic Acids and Nucleotides The nucleotides in a strand of DNA are joined by covalent bonds formed between their sugar and phosphate groups. DNA has four kinds of nitrogenous bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The nucleotides can be joined together in any order, meaning that any sequence of bases is possible.

Chargaff’s Rules Erwin Chargaff discovered that the percentages of adenine [A] and thymine [T] bases are almost equal in any sample of DNA. The same thing is true for the other two nucleotides, guanine [G] and cytosine [C]. The observation that [A] = [T] and [G] = [C] became known as one of “Chargaff’s rules.”

Franklin’s X-Rays Rosalind Franklin used X-ray diffraction to reveal an X-shaped pattern that showed: The strands of DNA are twisted around each other like the coils of a spring. That there are two strands in the structure. That the nitrogen bases may be near the center. In the 1950s, British scientist Rosalind Franklin used a technique called X-ray diffraction to get information about the structure of the DNA molecule.

The Work of Watson and Crick The clues in Franklin’s X-ray pattern enabled Watson and Crick to build a model that explained the specific structure and properties of DNA. They built three-dimensional model of DNA in a double helix, in which two strands were wound around each other. At the same time, James Watson, an American biologist, and Francis Crick, a British physicist, were also trying to understand the structure of DNA. Early in 1953, Watson was shown a copy of Franklin’s X-ray pattern.

Antiparallel Strands In the double-helix model, the two strands of DNA are “antiparallel”—they run in opposite directions. This arrangement enables the nitrogenous bases on both strands to come into contact at the center of the molecule. It also allows each strand of the double helix to carry a sequence of nucleotides, arranged almost like letters in a four-letter alphabet.

Hydrogen Bonding Watson and Crick discovered that hydrogen bonds could form between certain nitrogenous bases, providing just enough force to hold the two DNA strands together. Hydrogen bonds are relatively weak chemical forces that allow the two strands of the helix to separate. The ability of the two strands to separate is critical to DNA’s functions.

Base Pairing Watson and Crick realized that base pairing explained Chargaff’s rule. It gave a reason why [A] = [T] and [G] = [C]. This nearly perfect fit between A–T and G–C nucleotides is known as base pairing, and is illustrated in the figure. Watson and Crick’s model showed that hydrogen bonds could create a nearly perfect fit between nitrogenous bases along the center of the molecule. These bonds would form only between certain base pairs—adenine with thymine, and guanine with cytosine. For every adenine in a double-stranded DNA molecule, there had to be exactly one thymine. For each cytosine, there was one guanine. This nearly perfect fit between A–T and G–C nucleotides is known as base pairing, and is illustrated in the figure.