POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant,

Slides:



Advertisements
Similar presentations
Motion in One Dimension
Advertisements

Kinematics – describes the motion of object without causes that leaded to the motion We are not interested in details of the object (it can be car, person,
Motion Along a Straight Line
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Motion in One Dimension
General Physics 1, additional questions, By/ T.A. Eleyan
RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using.
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Chapter 2 Motion Along a Straight Line. Linear motion In this chapter we will consider moving objects: Along a straight line With every portion of an.
Motion of an object is the continuous change in the position of that object. In this chapter we shall consider the motion of a particle in a straight.
Motion in One Dimension
Motion in One Dimension
Motion in One Dimension Unit 1. Lesson 1 : Position, Velocity, and Speed Position : location of a particle with respect to a chosen reference point Displacement.
Chapter 2 Motion in One Dimension. Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used.
One Dimensional Motion
قسم الفيزياء - فيزياء عامة 1 - كلية التربية بالجبيل - جامعة الدمام د. غادة عميرة Motion in One Dimension.
Motion in One Dimension
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION Today’s Objectives: Students will be able to: 1.Find the kinematic quantities (position, displacement,
1.Measurements & units 2.Scalars & vectors 3.Displacement, Velocity and acceleration 4.Relative velocity. 5.Motion in two dimensions and in three dimensions.
Motion in one dimension
MAE 242 Dynamics – Section I Dr. Kostas Sierros. Important information Room: G-19 ESB Phone: ext 2310 HELP:
Displacement Speed and Velocity Acceleration Equations of Kinematics with Constant A Freely Falling Bodies Graphical Analysis of Velocity and Acceleration.
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Chapter 2 Kinematics: Description of Motion
Chapter 1 Motion in a straight line
Chapter 2: Motion along a straight line 2.1: Position and displacement The location of an object is usually given in terms of a standard reference point,
Chapter 2 Motion Along a Line. Position & Displacement Speed & Velocity Acceleration Describing motion in 1D Free Fall.
Graphical Look at Motion: displacement – time curve The slope of the curve is the velocity The curved line indicates the velocity is changing Therefore,
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Chapter 2 Motion Along a Line. MFMcGraw- PHY 1410Ch_02b-Revised 5/31/20102 Motion Along a Line Position & Displacement Speed & Velocity Acceleration Describing.
Chapter 2 Motion Along a Straight Line. Linear motion In this chapter we will consider moving objects: Along a straight line With every portion of an.
Representing Motion. Motion We are looking to ____________and ____________an object in motion. Three “rules” we will follow: –The motion is in a __________________.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
Chapter 2 MOTION IN ONE DIMENSION. Particle: A point-like object – that is, an object with mass but having infinitesimal size.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
As a first step in studying classical mechanics, we describe motion in terms of space and time while ignoring the agents that caused that motion. This.
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Displacement, Velocity, Constant Acceleration.
Chapter 3 Linear Motion Notes. Symbols velocity v distance d Acceleration a Gravitationalg acceleration.
An Overview of Mechanics Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics.
Kinematics Kinematics is the branch of physics that describes the motion of points, bodies (objects) and systems of bodies (groups of objects) without.
Equations of Motion Review of the 5 Equations of Motion.
Motion in One Dimension Mechanics – study of the motion of objects and the related concepts of force and energy. Dynamics – deals with why objects move.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
Motion Along a Straight Line Chapter 3. Position, Displacement, and Average Velocity Kinematics is the classification and comparison of motions For this.
Physics 141MechanicsLecture 2 Kinematics in One Dimension Kinematics is the study of the motion of an object. We begin by studying a single particle in.
PHY 151: Lecture 2B 2.5 Motion Diagrams 2.6 Particle Under Constant Acceleration 2.7 Freely Falling Objects 2.8 Kinematic Equations Derived from Calculus.
1 Physics Chapter 2 Motion in One Dimension Topics:Displacement & Velocity Acceleration Falling Objects.
Describing Motion: Kinematics in One Dimension Chapter 2.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Engineering Dynamics Module code NS 111 Engr. Dr Imran Shafi
Motion.
PHY 101: Lecture Displacement 2.2 Speed and Velocity
Motion in One Dimension
Introduction & Rectilinear Kinematics:
– KINEMATIC OF RECTILINEAR MOTION
Motion.
Kinematics of Particles
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Introduction to Motion
Motion in One Dimension
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Basics of graphing motion And studying their slopes S.Caesar
Chapter 12 : Kinematics Of A Particle
Kinematics in One Dimension
Presentation transcript:

POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant, relative to the origin, O, is defined by the position vector r, or the scalar s. Scalar s can be positive or negative. Typical units for r and s are meters (m) or feet (ft). The displacement of the particle is defined as its change in position. Vector form:  r = r’ - rScalar form:  s = s’ - s The total distance traveled by the particle, s T, is a positive scalar that represents the total length of the path over which the particle travels.

VELOCITY Velocity is a measure of the rate of change in the position of a particle. It is a vector quantity (it has both magnitude and direction). The magnitude of the velocity is called speed, with units of m/s or ft/s. The average velocity of a particle during a time interval  t is v avg =  r/  t The instantaneous velocity is the time-derivative of position. v = dr/dt Speed is the magnitude of velocity: v = ds/dt Average speed is the total distance traveled divided by elapsed time: (v sp ) avg = s T /  t

ACCELERATION Acceleration is the rate of change in the velocity of a particle. It is a vector quantity. Typical units are m/s 2 or ft/s 2. The instantaneous acceleration is the time derivative of velocity. Vector form: a = dv/dt Scalar form: a = dv/dt = d 2 s/dt 2 Acceleration can be positive (speed increasing) or negative (speed decreasing). As the book indicates, the derivative equations for velocity and acceleration can be manipulated to get a ds = v dv

SUMMARY OF KINEMATIC RELATIONS: RECTILINEAR MOTION Differentiate position to get velocity and acceleration. v = ds/dt ; a = dv/dt or a = v dv/ds Integrate acceleration for velocity and position. Note that s o and v o represent the initial position and velocity of the particle at t = 0. Velocity:   t o v v o dtadv   s s v v oo dsadvvor   t o s s o dtvds Position:

CONSTANT ACCELERATION The three kinematic equations can be integrated for the special case when acceleration is constant (a = a c ) to obtain very useful equations. A common example of constant acceleration is gravity; i.e., a body freely falling toward earth. In this case, a c = g = 9.81 m/s 2 = 32.2 ft/s 2 downward. These equations are: ta v v co  yields   t o c v v dtadv o 2 coo s t(1/2)a t v s s  yields   t os dtvds o )s - (s2a )(v v oc 2 o 2  yields   s s c v v oo dsadvv

EXAMPLE Plan:Establish the positive coordinate s in the direction the motorcycle is traveling. Since the acceleration is given as a function of time, integrate it once to calculate the velocity and again to calculate the position. Given:A motorcyclist travels along a straight road at a speed of 27 m/s. When the brakes are applied, the motorcycle decelerates at a rate of -6t m/s 2. Find:The distance the motorcycle travels before it stops.

EXAMPLE (continued) Solution: 2)We can now determine the amount of time required for the motorcycle to stop (v = 0). Use v o = 27 m/s. 0 = -3t => t = 3 s 1) Integrate acceleration to determine the velocity. a = dv / dt => dv = a dt => => v – v o = -3t 2 => v = -3t 2 + v o   t o v v dttdv o )6( 3)Now calculate the distance traveled in 3s by integrating the velocity using s o = 0: v = ds / dt => ds = v dt => => s – s o = -t 3 + v o t => s – 0 = (3) 3 + (27)(3) => s = 54 m   t o o s s dtvtds o )3( 2

CONCEPT QUIZ 1.A particle moves along a horizontal path with its velocity varying with time as shown. The average acceleration of the particle is _________. A)0.4 m/s 2 B)0.4 m/s 2 C)1.6 m/s 2 D)1.6 m/s 2 2.A particle has an initial velocity of 30 ft/s to the left. If it then passes through the same location 5 seconds later with a velocity of 50 ft/s to the right, the average velocity of the particle during the 5 s time interval is _______. A)10 ft/sB) 40 ft/s C)16 m/sD)0 ft/s t = 2 st = 7 s 3 m/s5 m/s

GROUP PROBLEM SOLVING Given:Ball A is released from rest at a height of 40 ft at the same time that ball B is thrown upward, 5 ft from the ground. The balls pass one another at a height of 20 ft. Find:The speed at which ball B was thrown upward. Plan:Both balls experience a constant downward acceleration of 32.2 ft/s 2. Apply the formulas for constant acceleration, with a c = ft/s 2.

GROUP PROBLEM SOLVING (continued) Solution: 1)First consider ball A. With the origin defined at the ground, ball A is released from rest ((v A ) o = 0) at a height of 40 ft ((s A ) o = 40 ft). Calculate the time required for ball A to drop to 20 ft (s A = 20 ft) using a position equation. s A = (s A ) o + (v A ) o t + (1/2)a c t 2 20 ft = 40 ft + (0)(t) + (1/2)(-32.2)(t 2 ) => t = s 2)Now consider ball B. It is throw upward from a height of 5 ft ((s B ) o = 5 ft). It must reach a height of 20 ft (s B = 20 ft) at the same time ball A reaches this height (t = s). Apply the position equation again to ball B using t = 1.115s. s B = (s B ) o + (v B ) o t + (1/2) a c t 2 20 ft = 5 + (v B ) o (1.115) + (1/2)(-32.2)(1.115) 2 => (v B ) o = 31.4 ft/s

ATTENTION QUIZ 2.A particle is moving with an initial velocity of v = 12 ft/s and constant acceleration of 3.78 ft/s 2 in the same direction as the velocity. Determine the distance the particle has traveled when the velocity reaches 30 ft/s. A)50 ftB) 100 ft C)150 ftD)200 ft 1.A particle has an initial velocity of 3 ft/s to the left at s 0 = 0 ft. Determine its position when t = 3 s if the acceleration is 2 ft/s 2 to the right. A)0.0 ftB)6.0 ft C)18.0 ftD)9.0 ft