Announcements Star Assignment 3, due Wednesday March 17 –READ chapter 16, –Do Angel quiz, –Do Astronomy Place tutorial “Measuring Cosmic Distances: Lesson.

Slides:



Advertisements
Similar presentations
Chapter 10 Our Star A Closer Look at the Sun Our Goals for Learning Why does the Sun shine? What is the Sun’s structure?
Advertisements

Stellar Evolution. A Closer Look at the Sun Our goals for learning: Why was the Sun’s energy source a major mystery? Why does the Sun shine? What is the.
Chapter 11: Our Star © 2015 Pearson Education, Inc.
Copyright © 2012 Pearson Education, Inc. Chapter 10 Our Star 1.
Chapter 9 The Sun.
Chapter 16 Modeling the solar interior The vibrating sun Neutrinos Solar atmosphere: –Photosphere –Chromosphere –Corona Sunspots Solar magnetic fields.
The Sun - Our Star Sun’s diameter 100 times the Earth’s
The Sun, our favorite star! WE CAN SEE IT REALLY WELL. The Sun is the basis for all of our knowledge of stars. Why?
The Sun’s Structure & Features Chapter 26.1 Chapter % H 28% He The sun is made up of gas Temps: 15 million K at core / 5000 K at surface The sun.
ASTR100 (Spring 2008) Introduction to Astronomy Our Star Prof. D.C. Richardson Sections
Announcements Angel Grades are updated (but still some assignments not graded) More than half the class has a 3.0 or better Reading for next class: Chapter.
Copyright © 2012 Pearson Education, Inc. Radius: 6.9  10 8 m (109 times Earth) Mass: 2  kg (300,000 Earths) Luminosity: 3.8  watts Our Star.
Stellar Interiors Astronomy 315 Professor Lee Carkner Lecture 10.
Announcements Angel Grade update Friday April 2 Reading for next class: 17.4, chapter 18 Star Assignment 7, due Monday April 5 ÜDo Angel quiz, ÜAstronomy.
Announcements Star Assignment 2, due Monday March 15 –READ chapter 15, do Angel quiz Global Warming Project, due Wednesday March 17 –Sample 4 web sites.
This Set of Slides This set of slides covers our Sun, nuclear processes, solar flares, auroras, and more… Units covered 49, 50, 51.
1 The Sun Our star - inside and out. 2 Earth having a really, really bad day.
Astronomy 100 Tuesday, Thursday 2:30 - 3:45 pm Tom Burbine
The Sun The Sun in X-rays over several years The Sun is a star: a shining ball of gas powered by nuclear fusion. Luminosity of Sun = 4 x erg/s =
Astronomy Picture of the Day. The Sun Core temperature - 15 million K Surface temperature K 99.9% of all of the matter in the solar system Entirely.
© 2005 Pearson Education Inc., publishing as Addison-Wesley The Sun: Our Star 29 April 2008.
© 2005 Pearson Education Inc., publishing as Addison-Wesley The Sun: Our Star How does the Sun work ? What is the energy source for the Sun ? The Planets.
Today’s APODAPOD  Read Chapter 11  Homework and Quiz 9 this week on Friday  Last Solar Lab on TOMORROW at NOON The Sun Today A100 The Sun.
Conversations with the Earth Tom Burbine
© 2005 Pearson Education Inc., publishing as Addison-Wesley The Sun: Our Star Lecture 21 How does the Sun work ? What is the energy source for the Sun.
© 2004 Pearson Education Inc., publishing as Addison-Wesley Our Star.
Scott Hildreth – Chabot College – Adapted from Essential Cosmic Perspective 4 th ed. Copyright 2007 by Pearson Publishing. Chapter 10 Our Star.
The Sun Section 26.1.
Chapter 14 Our Star
PHYS 205 Powerhouse PHYS 205 Possible sources Chemical Energy: Sun has hydrogen and if it has oxygen, than we can make water. will last 18,000 years.
Samantha Lythgoe Introductory Astronomy 1040
Information about Midterm #1 Grades are posted on course website Average = 129/180, s.d. = 27 Highest 180/180 Scores below 100 => “serious concerns” Next.
Structure of the Sun. The Core is where all the action is. The core is the only place in the Sun where the temperature (10 million K) and density are.
Stellar Structure Temperature, density and pressure decreasing Energy generation via nuclear fusion Energy transport via radiation Energy transport via.
The sun gives off tremendous amounts of energy
A105 Stars and Galaxies  News Quiz Today  Review Exam 1  Homework 6 (the Sun) due Thursday Today’s APODAPOD.
Our Star.
Lecture 19: The Sun Our Star Some Facts about the Sun  distance from Earth: 1.5 x 10 8 km  luminosity: 3.86 x W  mass: 1.98 x kg (3.33.
Formation of the Solar System Chapter 3. A Solar System is Born Section 1 Vocabulary Nebula Solar Nebula.
Chapter 20 – The Formation of the Solar System
© 2010 Pearson Education, Inc. 1. The Sun appears bright orange because of the extremely hot fires that are constantly burning carbon. TRUE or FALSE 2.
EXAM II Monday Oct 19 th (this coming Monday!) HW5 due Friday midnight.
It can be powered by NUCLEAR ENERGY! Luminosity ~ 10 billion years Nuclear Potential Energy (core) E = mc 2 - Einstein, 1905.
Scott Hildreth – Chabot College – Adapted from Essential Cosmic Perspective 4 th ed. Copyright 2007 by Pearson Publishing. Chapter 10 Our Star.
The Sun, our favorite star!
The Sun Diameter – 865,000 miles Color – Yellow Star – Yellow Dwarf Mass – Earth = 1, Sun = 332,000 Surface Temperature – 12,000 degrees Fahrenheit (Hot.
Bellwork What two properties effect the force of gravity?
Our Star The Sun.
Chapter 10 Our Star A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun’s structure?
Scott Hildreth – Chabot College – Adapted from Essential Cosmic Perspective 4 th ed. Copyright 2007 by Pearson Publishing. Chapter 10 Our Star.
© 2010 Pearson Education, Inc. The Sun. © 2010 Pearson Education, Inc. Why was the Sun’s energy source a major mystery?
PHYS 1621 Proton-proton cycle 3 steps. PHYS 1622 Layers of the Sun Mostly Hydrogen with about 25% Helium. Small amounts of heavier elements Gas described.
The Sun Distance from Earth: 150 million km OR 93 million miles Size: 1.4 million km in diameter Age: 4.5 billion years old, halfway through its 10 billion.
10.2 Nuclear Fusion in the Sun Our Goals for Learning How does nuclear fusion occur in the Sun? How does the energy from fusion get out of the Sun? How.
Chapter 14 Our Star.
Chapter 10 Our Star.
The Sun. Why does the Sun shine? Is it a ball of fire? A lump of burning coal or wood? Ancient people had no way of knowing how far away the Sun is, so.
The Sun. Properties M = 2 X kg = 300,000 M Earth R = 700,000 km > 100 R Earth 70% H, 28% He T = 5800 K surface, 15,000,000 K core.
How the Sun Shines. The Luminosities of Stars Stellar distances can be determined via parallax – the larger the distance, the smaller the parallax angle,
The Sun’s Energy Nuclear Fusion In the Beginning The Sun and solar system were born, as all stars are, out of a cloud of gas and dust – a nebula.
The Sun 1)H-R diagram 2)Solar Structure 3)Nuclear Fusion 4)Solar Neutrinos 5)Solar Wind/Sunspots October 21, 2002.
Chapter 14 Our Star. Why was the Sun’s energy source a major mystery?
© 2017 Pearson Education, Inc.
Chapter 11: Our Star © 2015 Pearson Education, Inc.
Homework Set #6 10/11/17 Due 10/18/17 Chapter 8
Sun Notes.
Solar Interior.
Fusion vs Fission Fission Fusion Division of an atom’s nucleus
The Sun and the Life of Stars
The sun gives off tremendous amounts of energy
Presentation transcript:

Announcements Star Assignment 3, due Wednesday March 17 –READ chapter 16, –Do Angel quiz, –Do Astronomy Place tutorial “Measuring Cosmic Distances: Lesson 2, Stellar Parallax” Global Warming Project, due Wednesday March 17 –Sample 4 web sites taking different positions on whether Global Warming is occurring & whether people are responsible. –For each site, evaluate the science - Is it good or poor? –Criteria (list from class discussion) –Submit via

Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity

Pressure Higher density --> particles closer together --> more collisions --> higher pressure Higher temperature --> particles move faster --> more & harder collisions --> higher pressure Pressure is force exerted by colliding particles

Equilibrium Pressure balances Gravity Pressure = weight of overlying material Pressure increases toward center to balance larger gravity toward center

Energy Source: Nuclear Fusion 4 1 H --> 1 4 He Energy

Fusion occurs ONLY in the Sun’s CORE ? Nuclear fusion Lighter nuclei are fused into heavier nuclei all nuclei are positively charged Electromagnetic force causes nuclei to repel each other. for fusion to occur, nuclei must be moving fast enough to overcome E-M repulsion this requires high temperatures When nuclei touch, the nuclear force binds them together

Electric Barrier

Answers to Explain the Thermostat Good - gives details Gravitational equilibrium acts as the Sun’s internal thermostat. If there is a small rise in the core temperature, the fusion rate will rise dramatically. The increased energy creates increased thermal pressure that can overcome gravity, causing the core to expand and cool which restores the fusion rate to normal. If there is a small decrease in the core temperature, there will be a dramatic decrease in the fusion rate. The decrease in energy will allow gravity to compress the core. This will heat up the core and in turn restore the fusion rate to normal. Bad - does not answer question: Nuclear fusion transforms hydrogen into helium and creates extra energy. This energy is so great it heats up to temperatures no spacecraft could survive if it ever attempted to journey to its core.

Energy Loss Heat is produced in the core Heat is lost (radiated away to space) from the surface How is heat transported from the hot core to the (relatively) cool surface?

Inner 2/3 of Sun Heat is transported by RADIATION

Radiative zone: Energy gradually diffuses outward (in about a million years) by randomly bouncing photons. Each hot core gamma ray photon becomes many visible cool surface photons.

Random Walk Activity Each person in center of classroom take a balloon. Blow it up and tie it. Tap it up. Everyone tap balloons UP when one comes to you Time how long it takes half of balloons to reach a wall Now compare with time it takes if balloon are tapped directly towards a wall.

Rate of energy loss Determined by bulk of star outside of core If star is good insulator -> rate of energy loss smaller If star is poor insulator -> rate of energy loss greater

Why does energy take so long to reach the surface? Good - gives details Gamma-ray photon collide with electrons often, sending them bounced in random directions. With each bounce the photon drifts farther from its initial location. As a result it has to go a much longer distance than a straight line and so takes a very long time to reach the surface Bad - no details Energy generated in the core takes about a million years to reach the surface, because the transportation process (via photons and convection) is so complex.

Outer 1/3 of Sun Energy is transported by CONVECTION

Granule ~ fountain Hot gas rises, spreads out, falls back

Convection zone: Hot gas rises, radiates away its heat at the surface, becomes cool gas and sinks, pulled down by gravity.

Convection pattern at solar surfact Hot gas rises (floats up) -> Brighter Cool gas sinks (pulled down by gravity) -> Darker ~ 1000 km

Convection pattern at the solar surface Sunspots: Magnetic fields inhibit convection -> cooler -> Darker (Fig )

Equilibrium: The Structure of a Star is determined by two balance conditions 1.Energy Production (by nuclear fusion in core) = Energy Loss (by radiation from surface) 2.Pressure (pushing out) = Gravity (pulling in)

Feedback - the Solar Thermostat (Fig. 15.8)

The Solar Thermostat Temperature increase Ü increased fusion  energy production greater than energy loss Ücore heats up Ü pressure increases Ü pressure greater than gravity Ü core expands  core cools (convert KE to PE)  energy generation decreases

Tests: Compare predictions of models with observations 1. Observations of resonant sound wave oscillations (helio-seismology) 2. Neutrino observations

Sound Waves in the Sun If wave comes back on itself, it is reinforced = resonant

Sound waves penetrate different distances probe the solar interior.

Global Oscillation Network Group

Observed as Doppler Shift at the solar surface

Test Solar Models: Compare frequencies of observed resonant oscillation modes with frequencies calculated from solar models Agreement Excellent

Model vs. Helioseismic Observations Density water = 1 g/cm 2 Fig

Sun in Neutrinos

Solar Neutrino Flux: Theory vs. Observation

Theory is biased by Experiment

Conclusion: either 1.Something wrong with models of the Sun 2.Something wrong with theory of neutrinos

Resolution (recent) 3 types of neutrinos - e, mu, tau Sun produces only e type SNO observing only e-type, sees 0.35 predicted number Super-Kamiokanda, sensitive to e + some mu & tau, sees 0.46 predicted number Conclusion: e-type mu & tau - types Hence, see only 1/3 predicted if observe only e-type