Recombinant Lipase- Catalyzed Biodiesel Production

Slides:



Advertisements
Similar presentations
Transesterification October 05, 2009.
Advertisements

Lipase B (from Candida antarctica). Introduction Lipases are a group of enzymes that hydrolyze triglycerides at the lipid- water interface. Triglycerides.
自由進入及離開. 定義  長期 ─ 是指生產者能夠改變所有生產因素的情況。  自由進入及離開 ─ 是指公司能夠自由進入及離開市場而不受限 制。
Biodiesel Production – Part 1: Feedstocks and Production Renewable Products Development Laboratories Portland, Oregon, USA.
全球化環境下的組織管理 本章內容 全球化的趨勢 國際化的階段 國際企業母公司對分支機構的管理取向 國際企業組織的結構設計 Chapter 6
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
18 CHAPTER AS-AD 與景氣循環. 18 CHAPTER AS-AD 與景氣循環.
NCKU EMBA 習題解答 Chapter /11/ Six – year saving (40,000-25,000)x6 $ 90,000 Cost of new machine (60,000) Undepreciated cost of old machine (30,000)
真理大學航空運輸管理學系 實務實習說明. 實務實習部份 實務實習 校內實習 校外實習 實習時數必須在 300 小時 ( 含 ) 以上才承認 校內實習時數及實習成績。 二個寒假 各一個月 暑假兩個月.
Biodiesel Feed Stock, Production Technology. BIODIESEL CONCEPT Diesel (Petroleum derived) Oil When Substituted Partly or Wholly by a Liquid Fuel Derived.
劉金源、李澤民 國立中山大學海洋科學學院 海下科技暨應用海洋物理研究所教授、海洋生物研究所教授 海洋科學 Marine Sciences.
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
投資分析與決策 1. 投資分析技術簡介 2. 損益平衡分析 3. 要素評分法 4. 狀況評估法 5. 工程經濟分析法.
五力模式 -葛維鈞-. 2 五力分析 產業內 競爭者 產業內 競爭者 替代者 購買者 供應者 潛 在 進入者 潛 在 進入者.
物流通關專業教室 (052) 國貿實務專業教室 (054) 企業資源整合專業教室 (055) 整合各專業教室資訊進行 即時動態及異常管理 (051) 貿易運籌研訓中心 專業實習、 、 師生研究討論 、、 、、 海關模擬系統、貨況追蹤、貨物 進出倉管理、海空運通關承攬、 通關自動化作業等相關模組 全球運籌決策中心.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
投資不足的成長上限 人民航空(People Express)
第二章 供給與需求 中興大學會計學系 授課老師:簡立賢.
Part 4 廠商與市場 產出與成本 產出與成本 Chapter 10 Economics, 6th, Parkin, 2004, Chapter 10: 產出與成本 [ 第 1 頁 ]
效率與公平 效率與公平 Part 2 Chapter 5 市場如何運作 Economics, 6th, Parkin, 2004, Chapter 5: 效率與公平 [ 第 1 頁 ]
真理大學航空服務管理學系 實務實習說明. 實務實習部份 實務實習 校內實習 校外實習 實習時數必須在 300 小時 ( 含 ) 以上才承認 校內實習時數及實習成績。 二個寒假 各一個月 暑假兩個月.
中信證券 海外理財介紹 何謂 PGN?. Principal guaranteed notes 原則保證票券 指交易相對人到期時,至少可獲得事先約定某一 比例的投資本金,而實際的總報酬,則是隨著連 結標的資產價格成長幅度而定。 保本型商品 PGN 可視為零息債券與買入選擇權的 組合,而發行券商依據對資產價格走勢的預期,
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
大陸問題研究 潘兆民 東海大學 通識教育中心. 第一章 大陸問題研究簡介 一、大陸問題研究的重 要性 二、國民政府為何會失 敗.
生產系統導論 生產系統簡介 績效衡量 現代工廠之特徵 管理機能.
Part 4 廠商與市場 完全競爭市場 完全競爭市場 Chapter 11 Economics, 6th, Parkin, 2004, Chapter 11: 完全競爭市場 [ 第 1 頁 ]
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
數位學習中迷思概念之診斷與應用 - 以 EXCEL 教學課程為例 淡江大學 資管碩一 林詒慧 資管碩一 陳韋翰 2011/04/221.
臺南縣官田鄉大崎村 66 號 66 Tachi, Kuantien, 720 Tainan, Taiwan Tel:(06) ~3 各大樓、系所暨單位用電量控管計畫 99 年度第 1 次節約能源推動小組臨時會議 2010/05/19 14:30.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
1 © 2011 台灣培生教育出版 (Pearson Education Taiwan). 2 學習目標 1. 當面對可預測的變異性時,同步管理並改善供應鏈 中的供給。 2. 當面對可預測的變異性時,同步管理並改善供應鏈 中的需求。 3. 當面對可預測的變異性時,使用總體規劃將利潤最 大化。
效用與需求 效用與需求 Part 3 Chapter 7 家庭的選擇 Economics, 6th, Parkin, 2004, Chapter 7: 效用與需求 [ 第 1 頁 ]
Ch 3 Central Tendency 中央集中趨勢測量.
Living things consist of atoms of different elements.
BTC PTEC Biodiesel Workshop August 7 – 8, 2006 Session 2 – Chemical Background.
Translation tips. A survey done by the University of Tokyo for Oriental Agriculture regarding business people revealed the following: A study involving.
平流層臭氧與氟氯碳化物 (CFC) 林小杏. 對流層 平流層 ( 氣溫 )( 臭氧濃度 ) ( 臭氧層 ) 紫外線 平流層中,一百萬個氣體分子大約只有 10 個是臭氧分子 。這些少量的氣體分子不斷的吸收對生物有害的紫外線 ,而且與其他氣體分子不斷的作用,透過氣體分子之間 的碰撞,臭氧分子再將所吸收的熱量傳給其他氣體分子.
OPTIMIZATION OF BIODIESEL YIELD FROM GROUNDNUT OIL By ABUBAKAR ABDULKADIR A
Biodiesel With Justin Lilly.
Biodiesel By: Ben Hobbs. Unit Objectives  What is biodiesel or diesel for that matter?  The chemistry of how biodiesel made?  How can it be used? 
SEPARATION BY ENZYMATICALLY CATALYZED REACTIONS Chapter 10.
Ahmed Atta A Introduction  Algae are a diverse group of primarily aquatic, single celled, plant like organisms. Most algae have characteristics.
UNIT 1: INTRODUCING BIOLOGY Chapter 2: Chemistry of life
Broadly biodieselis composed ofCarbon - 77%,Hydrogen -12%,Oxygen - 11% andtraces of Nitrogenand Sulfur(Tomasevic et al,2003) Advantages –Renewable,biodegradable,less.
第三單元 陸地和海洋 1.1 地殼物質的組成與循環.
Living things consist of atoms of different elements.
What is Biodiesel? Alternative fuel for diesel engines Made from vegetable oil or animal fat Lower emissions Easy biodegradable Lower toxicity.
New Frontiers in Biofuel Production Fernando Robelo Daniel Bowser.
Cross-border network for knowledge transfer and innovative development in wastewater treatment WATERFRIEND HUSRB/1203/221/196 1st HUSRB Students Meeting.
Bio-diesel Present Situation and Development Prospect Tao Ding.
2015/11/71 澎湖縣廚餘堆肥廠 簡介 簡介單位:澎湖縣政府環境保護局. 2015/11/72 基本資料說明 本縣一市五鄉, 90 多座大小島嶼,總 面積為 平方公里,現有戶口數 總計 32,658 戶,人口數總計 96,210 人 ,每日垃圾清運量 53.5 公噸,廚餘 回收量每日.
Living things consist of atoms of different elements.
2-2 Properties of Water Objectives: Compare/contrast solution and suspension Explain why buffers are important to homeostasis.
2.1 Atoms, Ions, and Molecules KEY CONCEPT All living things are based on atoms and their interactions.
WAJIHA SEERAT Ph.D. Scholar Department of Botany.
T.M.Sankaranarayananab, A.Panduranganb and S.Sivasanker a
Inorganic and Organic Compounds Inorganic - not made by living things Organic - made by living things - carbon compounds - forms covalent bonds.
Botkin - Chapter 18
The Chemistry of Life Chapter 2 Mr. Scott. 2-1 Atoms, Ions, and Molecules Living things consist of atoms of different elements. Living things consist.
Biomass/Biofuel/Biogas
KEY CONCEPT All living things are based on atoms and their interactions. Chapter 2: Macromolecules.
Biodiesel: Preparation, properties, advantages & disadvantages
Faculty of Life Sciences | Department Process Engineering Dipl.-Ing. Christian Augustin, M.Sc. | Prof. Dr.-Ing. Thomas Willner Investigations on vegetable.
References Abstract Conclusion The process of biodiesel production
Biodiesel Seminar On Submitted To: Submitted By:
Biodiesel: Lab and Process Analyses for Production Optimisation
Biodiesel A Sustainable Fuel.
Tek. Bioenergi (TKK-2129) Instructor: Rama Oktavian
Presentation transcript:

Recombinant Lipase- Catalyzed Biodiesel Production 蕭介夫 講座教授兼校長 Jei-Fu Shaw, Ph.D. Department of Food Science and Biotechnology National Chung Hsing University Tel: 04-22840201 e-mail: Boplshaw@gate.sinica.edu.tw

Global Warming 全球CO2總量收支狀況,圖中數值單位為十億噸 (Source: Stowe, K. 1996, "Exploring Ocean Science", 2th ed.)

Global Warming 因人為原因造成全球暖化現象之預估發展趨勢 [Source: Stowe 1996, "Exploring Ocean Science", 2th ed.]

能源現況 國際原油價格走勢(西元2003~2007年;美金/桶) (資料來源: 經濟部能源局)

Clean-Burning Fuel Biodiesel Renewable resource Better for environment Grown and refined domestically Substantially decreasing harmful emissions (Source: http:// www.propelbiofuels.com/site/aboutbiodiesel.html)

市場分析 國內市場 國際市場 量需求 中油估算三年後全面供應B2油品,所需生質柴油的量高達14萬公秉 生產成本 棕欖油: 23~24元/公升 1.德國最先研發並推行, 其年產量超過130萬噸 2.英國規定所有進入該城 市的公車,均需使用至 少B5的生質柴油為燃料 。今年6月,全球第一列 使用生化柴油的火車也 在英國上路,英國維京 航空計畫二年後推出使 用生質柴油的環保客 機。 生產成本 棕欖油: 23~24元/公升 大豆油: 27元/公升 油菜籽油: 30元/公升 年產量 最大可生產33萬公秉的生質柴油 產能 承德油脂公司利用回收食用油及積勝利用棕櫚油,合計產能約為5,000 公秉 (資料來源: 自由時報 2007/7/1)

What is Biodiesel? Biodiesel FAME (Fatty acid methyl ester) Alkyl ester of long chain fatty acid (C16-C18) FAME (Fatty acid methyl ester) FAEE (Fatty acid ethyl ester) (TAG) (Biodiesel) Catalysts: Two of the most commonly used catalysts for transesterification are NaOH and KOH. R1, R2, and R3 are long chains of carbons and hydrogen atoms, sometimes called fatty acid chains.

Sources of Renewable Oils and Fats Plant-derived oils (TAG) Green plants grow through the photosynthesis process with CO2 as a carbon source The combustion of plant-derived oils will release CO2 which has previously been fixed through photosynthesis Advantages Renewable Inexhaustible Nontoxic Biodegradable Similar energy content to fossil diesel fuel (Source: http: www.fengyuan.gov.tw)

Fuel Ingredients Comparison Fuel ingredients Fossil diesel Biodiesel Fuel Standard ASTM D975 ASTM PS121 Fuel Composition C10-C21 HC C16-C18 FAME Lower Heating Value, Btu/gal. 131,295 117,093 Kin. Viscosity, at 40oC 1.3-4.1 1.9-6.0 Water, ppm by wt. 161 0.05% max. Carbon, wt % 87 77 Hydrogen, wt % 13 12 Oxygen, wt % 0 11 Sulfur, wt % 0.5 max. 0.0-0.0024 Boiling Point, oC 188-343 182-338 Flash Point, oC 60-80 100-170 Pour Point, oC -35 to –15 -15 to 10 Cetane Number 40-55 48-70 BOCLE Scuff, grams 3,600 7,000 HFRR, microns 685 314 (Source: National Renewable Energy Laboratory, Sept. 2001) -閃火點(FLASH POINT) 並非燃點, 它是燃料在自然揮發下其油氣得以點燃卻不足以維持燃料燃燒的最低溫度 -流動點(Pour Point)為測定潤滑油在規定條件下,將油料冷卻至不可流動之最低溫度。 -凝結的溫度則叫做「雲點(cloud point)」

Sources of Renewable Oils and Fats Waste oils and fats Frying oils, lard, beef tallow, yellow grease, and other hard stock fats Advantage Cheap Disadvantages High polymerization products High free fatty acid contents Susceptibility to oxidation High viscosity Poor-quality oils may inactivate the basic or even enzyme catalysts Solve strategy Preliminary treatment Such as the use of adsorbent materials (magnesium silicates) Reduce free fatty acid content and polar containminants

Sources of Renewable Oils and Fats Microbial oils—Algal oils Largely produced through substrate feeding and heterotrophic fermentation Another cheap source of renewable new materials Strain Lipids content (%) Enzyme Biodiesel yield Reaction conditions Chlorella protothecoids 44-48% Immobilized Candida sp. lipase 98% of FAEE Molar ratio 3:1 Reaction time 12 h – Pseudomonas fluorescens lipase (1,3-specific) 92% 20 ºC in 12 h (Source: Biotechnol. Bioeng. 2007, DOI: 10.1002/bit.21489. In press; Appl. Microbiol. Biotechnol. 2006, 73, 349-355)

Source of acyl acceptors Different alcohol and different fatty acid produce different biodiesel of different properties Source of acyl acceptors Main purpose of alcoholysis (transesterification) Reduce the viscosity of the fat Increase volatility and FA ester combustion in a diesel engine Acyl acceptors Products Advantages Disadvantages Methanol FAME 1. Cheaper than ethanol 2. More reactive 3. More volatile 1.Toxic 2.Mostly nonrenewable Ethanol FAEE 1. More renewable 2. Environmental friendly 1. More expensive 2. Less reactive Others: propanol, isopropanol, butanol, branched-chain alcohols, t-butanol, octanol, methyl and ethyl acetate (Source: Akoh et al., J. Agric. Food Chem., 2007, 55, 8995-9005)

Different alcohol and different fatty acid produce different biodiesel of different properties 杏核仁油 月桂葉油 玻璃苣油 椰子油 玉米油 棉花子油 海甘藍油 落花生油 榛果油 麻瘋樹 水黃皮籽油 亞麻子油 橄欖油 棕櫚油 花生油 罌粟籽油 葡萄籽油 米糠油 葵花籽油 芝麻油 大豆油 葵花油 烏桕 核桃仁油 小麥油 (Source: Akoh et al., J. Agric. Food Chem., 2007, 55, 8995-9005)

Fatty Acid Characterizations TABLE 1 Some naturally occuring fatty acids: structure, properties, and nomenclature [Source: Nelson and Cox 2005, “Lehninger Principles of Biochemistry, 4th ed.]

Fatty Acids Extended Conformations Saturated Fatty Acid (SFA) Unsaturated Fatty Acid (UFA) [Source: Nelson and Cox 2005, “Lehninger Principles of Biochemistry, 4th ed.]

Fatty Acids Biosynthesis Pathway (Source: http:// www.chori.org)

Routes of Fatty Acid synthesis [Source: Nelson and Cox 2005, “Lehninger Principles of Biochemistry, 4th ed.]

Lipid Biosynthesis DAGAT Diacylglycerol [Source: Nelson and Cox 2005, “Lehninger Principles of Biochemistry, 4th ed.]

Glycerol and Triacylglycerol [Source: Nelson and Cox 2005, “Lehninger Principles of Biochemistry, 4th ed.]

Chemical Catalyst Transesterification Initial reaction Transesterification (Alcoholysis) reaction

Chemical Catalyst Transesterification Proton exchange reaction

Chemical Catalyst Transesterification Other unfavorable reactions

Chemical Catalyst Transesterification Reaction condition (Sources: NoureddiniH et al.75(12), 1775-1783, 1998; DarnokoD. and CheryanM. JAOCS, 77, 1269–1272, 2000.; He et al. Transactions of the ASAE, 48, 2237-2243, 2005; He et al. Transactions of the ASABE, 49, 107-112, 2006)

Biodiesel Production Two available approaches Chemical catalyst Enzyme catalyst Approach Parameters Chemical Enzyme Catalyst Sodium methoxide Lipase Temperature High Mild Separation Difficult Easy Reusable   Purity Side reaction Nature (Source: Bioresour. Technol. 1999, 79, 1-15. ; J. Mol. Catal. B: Enzymatic 2002, 17, 133-142.)

Lipase-Catalyzed Reactions (Source: Lipid 2004, 39, 513-526)

Enzymatic Biodiesel Reaction mechanism Materials Oil resources: soy bean, rapeseed, palm, and jatropha etc. Alcohol types: Ethanol, Methanol, and Isopropanol etc. Solvent systems: n-hexane, t-butanol, and solvent-free etc. COOR1 RCOOR1 COOR1 OH OH Lipase ROH + COOR2 RCOOR2 + COOR2 + OH + OH COOR3 OH COOR3 OH RCOOR3 Alcohol Oil Alkyl ester DG MG Glycerol (Triacylglycerol) (Biodiesel) R1, R2, and R3 are long chains of carbons and hydrogen atoms, sometimes called fatty acid chains. DG: Diacylglycerol; MG: Monoacylglycerol

Lipases Advantages Mild reaction conditions Specificity Reuse Enzymes or whole cells can be immobilized Can be genetically engineered to improve Their efficiency Accept new substrates More thermostable The reactions they catalyze are considered as “natural” and “green”

CRL isozymes Similarity High-identity gene family (lip1 to lip7) Consisting of 534 amino acids An evident MW of 60 kDa Conserved at a catalytic triad Ser-209, His-449 and Glu-341 Disulphide bond formation sites Cys-60/Cys-97 Cys-268/Cys-277

United States Patent

Related Publications Recombinant LIP1 Recombinant LIP2 and LIP4 Chang, S. W., C. J. Shieh, G. C. Lee and J. F. Shaw*, 2005. Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Appl. Microbiol. Biotechnol. 67: 215-224. (SCI) Chang, S. W., G. C. Lee, J. F. Shaw*, 2006. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J. Agric. Food Chem. 54, 815-822. (SCI) Chang, S. W., G. C. Lee, C. C. Akoh, J. F. Shaw*, 2006. Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM, J. Mol. Microbiol. Biotechnol. 11, 28-40. (SCI) Recombinant LIP2 and LIP4 Lee, L. C., Y. T. Chen, C. C. Yen, T. C. Y. Chiang, S. J. Tang, G. C. Lee*, and J. F. Shaw*, 2007. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. J. Agric. Food Chem. 55: 5103−5108. (SCI) Lee, G. C., L. C. Lee, and J. F. Shaw*, 2002. Multiple mutagenesis of nonuniversal serine codons of Candida rugosa LIP2 gene and its functional expression in Pichia pastoris. Biochem. J. 366:603-611. (SCI) Tang, S.J., J.F. Shaw, K.H. Sun, G.H. Sun, T.Y. Chang, C.K. Lin, Y.C. Lo and G.C. Lee. 2001. Recombinant expression and characterization of the Candida Rugosa Lip4 lipase in Pichia pastoris:Comparison of glycosylation, activity and stability. Archives Biochem. Biophys. 387: 93-98. (SCI) Recombinant LIP3 Chang, S. W., G. C. Lee, J. F. Shaw*, 2006. Efficient production of active recombinant Candida rugosa LIP3 Lipase in Pichia pastoris and biochemical characterization of the purified enzyme. J. Agric. Food Chem. 54: 5831-5838. (SCI) Review Akoh, C. C., G. C. Lee, and J. F. Shaw*, 2004. Protein Engineering and Applications of Candida rugosa Lipase Isoforms. Lipids 39 (6):513-526. (SCI) Akoh, C. C., Chang, S. W., G. C. Lee, and J. F. Shaw*, 2007.Enzymatic Approach to Biodiesel Production. J. Agric. Food Chem. 55: 8995-9005.

Recombinant CRL Isoform for Biodiesel Production Figure Effect of methanol addition times on biodiesel conversion catalyzed by LIP2. The reaction condition was subject to a loading of 0.5 g soybean oil, oil/methanol molar ratio = 1/4, 20% water content, and 12-h reaction time at 35 ºC. The enzyme solution (LIP2) used in this work was 70 μL. The time interval between the two methanol additions was 1 h.

Protein Engineering Technology Computer modeling prediction Protein structure Catalytic triad Active site Substrate binding site Develop functional enzyme Directed evolution Point mutation Error prone PCR DNA shuffling Docking for Candida rugosa lipase

Protein Engineering Technology Table Important amino acid changes producing structural differences among C. rugosa LIP 1, LIP 2, LIP 3 and LIP 4 Residue LIP1 LIP2 LIP3 LIP4 69 Tyr Phe Phe Trp 127 Val Leu Ile Val 132 Thr Leu Ile Leu 296 Phe Val Phe Ala 344 Phe Leu Ile Val 450 Ser Gly Ala Ala ( Source: Mancheno, J.M. et al. 2003 )

Protein Engineering Technology (kb) M 1 2 3 4 5 Lane 1: Represent the WT lip4 Lane 2: Represent the A296I Lane 3: Represent the V344Q Lane 4: Represent the V344H Lane 5: Represent the H448S 3.0 1.5 2.0 Figure PCR analysis of P. pastoris transformants. Using the genomic DNA as templates, and rector specific 5’ α-factor primer and 3’ AOX1 primer.

wild-type Candida rugosa lip4 A296I (B) wild-type Candida rugosa lip4 296 V344Q V344H (C) wild-type Candida rugosa lip4 344 H448S 448 Figure Genomic DNA-sequence comparisons between wild-type Candida rugosa lip4(CRL4) and A296(A),CRL4, V344Q and V344H(B)CRL4, and H448S(C). The difference locations between mutated codons and wild-type are cased in red squre.

Protein Engineering Technology Wild-type A296I V344Q V344H H448S Negative control (P. pastoris KM 71) Figure Lipase plate(C4) assay. The wild-type, A296I, V344Q, V344H, H448S and negative control ( P. pastoris KM 71) were transferred on the YPD agar plate containing 100 μg/ml Zeocin and 1% tributyrin, and cultured for 48 hours at 30 ℃.

Protein Engineering Technology 1 2 3 4 5 6 M (kDa) 97.4 84.0 66.0 55.4 Figure 13 SDS-PAGE of the wild-type, A296I, V344Q, V344H, H448S and Negative control . Lane 1: Represent the wild-type; Lane 2: Represent the A296I Lane 3: Represent the V344Q ; Lane 4: Represent the V344H Lane 5: Represent the H448S ; Lane 6: Represent the Negative control(KM 71)

Protein Engineering Technology Specific activity (U/mg) Figure The substrate specific activity of C. rugosa LIP4 wild-type , A296I, V344Q, V344H and a H448S with p-nitrophenyl (p-NP) esters of various chain-length fatty acids. The lipase sample was added to a reaction mixture containing 5 mM p-nitrophenyl ester(such as acetate、butyrate、caproate and caprylate)and 2.5 mM p-nitrophenyl ester(such as caprate、laurate、myristate、palmitate and stearate)at pH 7.0.

Protein Engineering Technology Specific activity (U/mg) Figure The substrate specific activity of C. rugosa LIP4 wild-type , A296I, V344Q, V344H and a H448S with triglyceride of various chain-length fatty acid. The lipase sample was added to a reaction mixture containing 50 mM triglyceride (such as tributyrin、tricaprin) and 10 mM triglyceride (such as trilaurin、ripalmitin) and the activity was measured by pH stat at pH 7.0.

Enzyme Immobilization Advantages Easy to control enzyme concentration Easy separation of the immobilized enzyme Easy to control micro-environment Easy separation of enzyme from product Reuse of the enzyme

Enzyme Immobilization Principal Methods Adsorption Covalent binding Encapsulation Entrapment Cross-linking (Source: Gordon F. Bickerstaff ,1997)

Lipolytic Activities of a Lipase Immobilized on Six Selected Supporting Materials (Source: Biotechnology and Bioengineering, 1990, 35, 132-137)

Lipolytic Activities of a Lipase Immobilized on Six Selected Supporting Materials (Source: Biotechnology and Bioengineering, 1990, 35, 132-137)

Continuous Bioreactor Systems Types Stirred-tank bioreactor Membrane bioreactor Fluidized bed reactor Packed-bed bioreactor Advantages Easily used Continuous process with automatic control Long term reaction time High product concentration (Source: Lipid biotechnology. 2002. p. 387–398.; 生物固定化技術與產業應用。2000。 第121–155頁 )

Continuous Packed-Bed Bioreactor (a) Substrate mixture (b) Pump (c) Incubation chamber (d) Packed bed reactor (e) Product collector

How to increase oil content of plants? Fatty acid biosynthesis pathway Locations ER: Polyunsaturated fatty acids (PUFAs) Plastid: primary saturated and monounsaturated fatty acids Oil body: triglyceride First step: Acetyl-CoA + CO2  Malonyl-CoA First enzyme: Acetyl-CoA carboxylase (ACCase)

How to increase oil content of plants? Fatty acid biosynthesis pathway in plant Acetyl-CoA carboxylase (ACCase) KASs=3-ketoacyl-ACP synthases TEs=thioesterases DEs=Desaturases ATs=Acyltransferases (Source: http://www.uky.edu)

How to increase oil content of plants? Genetic modified technology for ACCase in plants Functional promoter region construct Functional gene expression [Source: Ohlrogge and Browse (1995) The Plant Cell 7, 957-970]

Conclusion Advantages of Biodiesel from vegetable oils or their blends Renewable Biodegradable oxygenated Less or nontoxic Low sulfur content and higher cetane numbers Produces less smoke and particulates Produces lower carbon monoxide and hydrocarbon emissions Low aromatic content Higher heat content of about 88% of number 2 diesel fuel Readily available

Conclusion Future trend for fuel production—Biotechnology Protein (enzyme) engineering Catalytic efficiency improvement High specific activity Novel substrate specificity Different regio-selectivity Enantioselectivity improvement High stabilities pH Temperature Organic solvents etc.

Conclusion Future trend for fuel production—Biotechnology Genetic modified technology Increase oil content in various plants Functional promoter development High level expression of key enzyme Microbial engineering--Microdiesel Recombinant E. coli host for ethanol production Coexpression of the ethanol production genes Pyruvate decarboxylase (pdc gene product) Alcohol dehydrogenase (adhB gene product) Unspecific acyltransferase WS/DGAT gene From Zymomonas mobilis From Acinetobacter baylyi strain ADP1 (Source: Microbiology, 2006, 152, 2529-2536)

Conclusion Microbial engineering--Microdiesel Figure Pathway of FAEE biosynthesis in recombinant E. coli. FAEE formation was achieved by Coexpression of the ethanolic enzymes pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) From Z. mobilis and the unspecific acyltransferase WS/DGAT from A. baylyi strain ADP1. (Source: Microbiology, 2006, 152, 2529-2536)

References Li, X.; Xu, H.; Wu, Q. Large-scale biodiesel production from microalga Chlorella protothecoids through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 2007, DOI:10.1002/bit. 21489 (in press). Luo, Y.; Zheng, Y.; Jiang, Z.; Ma, Y.; Wei, D. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl. Microbiol. Biotechnol. 2006, 73, 349-355. Kalscheuer, R.; Stölting, T.; Steinbüchel, A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 2006, 152, 2529-2536. Stowe, K. Exploring Ocean Science, 2nd Ed., Wiley, New York, 1996. Nelson, D. L; Cox, M. M. “Lehninger Principles of Biochemistry, 4th ed. W.H. Freeman and Company, New York, 2005. Kuo, T. M. and Gardner, H. W. Lipid biotechnology. p. 387–398. Marcel dekker. New York. USA, 2002. Ma, F.; Hanna M. A. Biodiesel production: a review. Bioresour. Technol. 1999, 70, 1–15. Shimada, Y.; Watanable, Y.; Sugihara, A.; Tominaga, Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enzymatic 2002, 17, 133–142.

Contact Information ISBB Symposium Secretariat 250, KuoKuang Rd.,  Taichung, 40227, Taiwan Tel: +886-4-2284-0550 ext304 Fax:+886-4-2285-0177 E-Mail: tlko@dragon.nchu.edu.tw Welcome to Taichung, Taiwan.   The main theme of the symposium is Agricultural Biotechnology. The following lists the main areas that will be focused in the meeting:   1). Functional Food and Industry Products 2). Improvement of Agronomic and Microbial Traits 3). Biofuel 4). Nanobiotechnology

Acknowledgement Shu-Wei Chang, Ph. D. Prof. Casimir C. Akoh Department of Nutrition and Health Science Chung-Chou University of Technology Prof. Casimir C. Akoh Department of Food Science and Technology The University of Georgia Prof. Chwen-Jen Shieh Department of Bioindustry Technology Dayeh University Mr. Chih-Chung Yen Institute of Agricultural Biotechnology National Chiayi University

THANK YOU !!!