ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.

Slides:



Advertisements
Similar presentations
1 AHCAL answers IDAG Erika Garutti On behalf of AHCAL analysis team.
Advertisements

Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger David Hadley on behalf of the ATLAS Collaboration.
CMS ECAL Laser Monitoring System Toyoko J. Orimoto, California Institute of Technology, on behalf of the CMS ECAL Group 10th ICATPP Conference on Astroparticle,
TileCal Electronics A Status Report J. Pilcher 17-Sept-1998.
CMS ECAL Laser Monitoring System Toyoko J. Orimoto, California Institute of Technology, on behalf of the CMS ECAL Group High-resolution, high-granularity.
CMS ECAL Laser Monitoring System Toyoko J. Orimoto, California Institute of Technology On behalf othe CMS ECAL Collaboration High-resolution, high-granularity.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Status of Atlas Tile Calorimeter and Study of Muon Interactions L. Price for TileCal community Short Overview of the TileCal Project mechanics instrumentation.
Shashlik type calorimeter for SHIP experiment
The ATLAS Tile Calorimeter: Commissioning and Preparation for Collisions Presented by Oleg Solovyanov On behalf of the Tile Calorimeter Collaboration of.
Calibration of the ZEUS calorimeter for electrons Alex Tapper Imperial College, London for the ZEUS Collaboration Workshop on Energy Calibration of the.
1 A ROOT Tool for 3D Event Visualization in ATLAS Calorimeters Luciano Andrade José de Seixas Federal University of Rio de Janeiro/COPPE.
Introduction Construction, Integration and commissioning on the surface Installation and commissioning after installation in the cavern Selected performance.
ATLAS Liquid Argon Calorimeter Monitoring & Data Quality Jessica Levêque Centre de Physique des Particules de Marseille ATLAS Liquid Argon Calorimeter.
A. Gibson, Toronto; Villa Olmo 2009; ATLAS LAr Commissioning October 5, 2009 Commissioning of the ATLAS Liquid Argon Calorimeter Adam Gibson University.
EXAMINATION OF CORRUPTED DATA IN THE TILE CALORIMETER Stephanie Hamilton Michigan State University The ATLAS Collaboration Supervisor: Irene Vichou (U.
Calibration of the CMS Electromagnetic Calorimeter with first LHC data
The ZEUS Hadron-Electron-Separator Performance and Experience Peter Göttlicher (DESY) for the ZEUS-HES-group Contributions to HES Germany, Israel, Japan,
CMS ECAL Laser Monitoring System Christopher S. Rogan, California Institute of Technology, on behalf of the CMS ECAL Group High-resolution, high-granularity.
Algorithms for the ROD DSP of the ATLAS Hadronic Tile Calorimeter
Uniformity in ATLAS EM Calo measured in test beams  Constraints on the EM calorimeter constant term  Energy reconstruction  Uniformity results with.
8/18/2004E. Monnier - CPPM - ICHEP04 - Beijing1 Atlas liquid argon calorimeter status E. Monnier on behalf of the Atlas liquid argon calorimeter group.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
08-June-2006 / Mayda M. VelascoCALOR Chicago1 Initial Calibration for the CMS Hadronic Calorimeter Barrel Mayda M. Velasco Northwestern University.
The Status of the ATLAS Experiment Dr Alan Watson University of Birmingham on behalf of the ATLAS Collaboration.
Combined Longitudinal Weight Extraction and Intercalibration S.Paganis ( Wisconsin ) with K.Loureiro ( Wisconsin ), T.Carli ( CERN ) and input from F.Djama(Marseille),
E. GaruttiCALICE collaboration meeting, Prague CERN Test beam (part II) Erika Garutti, Fabrizio Salvatore.
1 Yu. Guz HCAL status 22/06/ Yu. Guz HCAL 137 Cs calibration The 3 rd run in 2011 was performed at the technical stop, May-09. Two source passages,
Results from particle beam tests of the ATLAS liquid argon endcap calorimeters Beam test setup Signal reconstruction Response to electrons  Electromagnetic.
Mechanics and granularity considerations of a Tile hadronic calorimeter for FCC hh barrel Nikolay Topilin/Dubna+ Sergey Kolesnikov/Dubna Ana Henriques/CERN.
Calo preparation for 2015 Goals: -Trigger stability -Good calibration for HLT2 processing -Improved calibration ( timing, e/gamma response) for all calo.
ATLAS Tile Hadronic Calorimeter:
1 P.Rebecchi (CERN) “Monitoring of radiation damage of PbWO 4 crystals under strong Cs 137  irradiation in GIF-ECAL” “Advanced Technology and Particle.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
(s)T3B Update – Calibration and Temperature Corrections AHCAL meeting– December 13 th 2011 – Hamburg Christian Soldner Max-Planck-Institute for Physics.
TTF - ECAL Plenary in CMS week ECAL Stability Contacts: Marc Dejardin, Julie Malcles (laser)
The ATLAS Tiles Hadronic Calorimeter
LHCf Detectors Sampling Calorimeter W 44 r.l, 1.6λ I Scintilator x 16 Layers Position Detector Scifi x 4 (Arm#1) Scilicon Tracker x 4(Arm#2) Detector size.
Hardeep Bansil (University of Birmingham) on behalf of L1Calo collaboration ATLAS UK Meeting, Royal Holloway January 2011 Argonne Birmingham Cambridge.
Studies of Electroweak Interactions and Searches for New Physics Using Photonic Events with Missing Energy at the Large Electron-Positron Collider Marat.
Test Beam Results on the ATLAS Electromagnetic Calorimeters Lucia Di Ciaccio – LAPP Annecy (on behalf of the ATLAS LAr Group) OUTLINE Description of the.
Calibration and monitoring of the ATLAS Tile Calorimeter
NUMI NUMI/MINOS Status J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting.
LHC Symposium 2003 Fermilab 01/05/2003 Ph. Schwemling, LPNHE-Paris for the ATLAS collaboration Electromagnetic Calorimetry and Electron/Photon performance.
The ATLAS Tile hadron calorimeter The ATLAS Tile hadron calorimeter Ana Henriques/CERN on behalf of the ATLAS collaboration ANIMMA 2015, April Content:
Sergey BarsukElectromagnetic Calorimeter for 1 Electromagnetic Calorimeter for the LHCb experiment Perugia, Italy March 29 – April 2, 2004 ECAL CALO Sergey.
Muon Detectors Tile Calorimeter Liquid Argon Calorimeter Solenoid Magnet Toroid Magnets 46m 22m SemiConductor Tracker(SCT) Pixel Detector Transition Radiation.
V. Pozdnyakov Direct photon and photon-jet measurement capability of the ATLAS experiment at the LHC Valery Pozdnyakov (JINR, Dubna) on behalf of the HI.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.D. Nov 27th 2002M0' workshop1 M0’ linearity study  Contents : Electronic injection Laser injection Beam injection Conclusion.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
The ATLAS Liquid Argon Calorimeter: Overview and Performance Huaqiao ZHANG (CPPM) On behalf of the ATLAS Liquid Argon Calorimeter Group.
DE/dx in ATLAS TILECAL Els Koffeman Atlas/Nikhef Sources: PDG DRDC (1995) report RD34 collaboration CERN-PPE
 13 Readout Electronics A First Look 28-Jan-2004.
TileCal EM scale status Irene Vichou University of Illinois at Urbana on behalf of TileCal Collaboration MPI Hadronic Calibration Workshop May 3 rd, 2006.
ATLAS Tile Calorimeter Data Quality Assessment and Performance
Calorimeter Status Electronics Installation and Commissioning
on behalf of ATLAS LAr Endcap Group
Resolution Studies of the CMS ECAL in the 2003 Test Beam
A First Look J. Pilcher 12-Mar-2004
CMS ECAL Calibration and Test Beam Results
LHCb HCAL: performance and calibration
Plans for checking hadronic energy
Installation, Commissioning and Startup of ATLAS & CMS Experiments
Presentation transcript:

ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.

The Tile Calorimeter Steel absorber plates and plastic scintillator tiles Coverage: Long Barrel |η| < 1.0, Extended Barrel 0.8 < |η| < 1.7 Four partitions, over 4,900 cells, two PMTs per cell, two gains per PMT Three longitudinal layers: A, BC, & D total thickness of about 7λ Design resolution for jets(LAr + Tile): 22/04/13Henric Wilkens (CERN)2

Energy Calibration 22/04/13Henric Wilkens (CERN) E pmt = Amplitude × C ADC→pC × ξ laser × ξ Cs × C pC→MeV Factors in the calibration: C ADC→pC : The Charge Injection System monitors electronics stability. Calibrated 3 times/week. ξ laser : A laser system monitors PMT gain and timing of individual channels. Calibrated 3 times/week + Empty bunch crossings (1Hz) ξ Cs : Maintain same cell response to known source. Calibrated monthly. C pC→MeV : 11 % of the Tilecal modules where calibrated at the SPS with e +-,  , hadrons, to determine the Electromagnetic Scale. Calibration strategy: Use the laser to tune channels that drift more than a few % in between monthly Cs runs to maintain the determined E-scale 3

Cesium calibration 22/04/13Henric Wilkens (CERN) Each Tilecal cylinder is equipped with a system of pipes, transporting a Cs 137 source through each of the tiles. ( ~17km of pipes in total). Illuminates tiles with 662 keV photons (source ~10MBq), readout through the integrator system. Runs last long, not compatible with collisions, ie are taken during MD/TS (~1month). 4

Stability of the Cesium Response 22/04/13Henric Wilkens (CERN) Cs calibration has a precision of 0.3%. Corrects for deviations from the expected Cs decay response: : up-drift of about 0.8% per year. since 2011: down-drift when beam is on, up-drift when beam is off & during low luminosity heavy ion run. largest down-drift in innermost part of the tile calorimeter (sample A), is < −3.5%. 5

Laser system 22/04/13Henric Wilkens (CERN) Laser system has a precision of < 1%. Gain variation observed by the laser system is compatible with the variation seen by the Cs system. Excellent agreement between laser and Cs calibrations 6

Charge Injection System Only ∼ 0.04% shift in calibration constants of fully functional channels ( ∼ 99%) over the entirety of 2012 Tile-wide calibration constants for all channels in both gains are very stable Typical channel calibrations deviated little from the average 22/04/13Henric Wilkens (CERN)7

Calibration of the Gap & Crack Scintillators Gap scintillators (E1, E2): −3%, mostly PMT gain variation (laser ∼ Cs response) Crack scintillators (E3, E4): ∼ −15% 1/3 scintillator irradiation, 2/3 PMT gain drift. Re-calibrate with laser/Cs info (no Cs in E3/E4), checked with muons Z → ee analysis (by e/γ group) showed a stable response. Partial recovery seen when beam is off, f.i during machine developments and technical stops. 22/04/13Henric Wilkens (CERN)8

Signal reconstruction The signal from a PMT is made up of seven ADC samples spaced 25 ns apart. An optimal filtering algorithm is used to determine the amplitude, timing, and pedestal of the signal 22/04/13Henric Wilkens (CERN)9

Energy Performance 22/04/13Henric Wilkens (CERN) Large phases bias the reconstructed energy Apply phase corrections on pulses with E > 160 MeV Energy difference vs online time before (red points) and after phase correction (blue points) Difference between energy calculated online with the Digital Signal Processor (DSP) and offline Max expected difference scales with the overall calibration of each channel 10

Timing performance 22/04/13Henric Wilkens (CERN) Selected cells E cell > 20 GeV belonging to reconstructed jets. Excluded tile cells with unstable timing (1% of cells) Cell time corrected for its mean time. Muons deposit only a small fraction of their energy: –~2GeV: 1.15 ns < σ Time <1.3 ns. –~20GeV: σ Time ∼ 0.6ns 11

2012 Tile Efficiency Summary 22/04/13Henric Wilkens (CERN) Tile Data Quality efficiency for 2012 was 99.6%. Data is rejected when ≥ 4 consecutive modules are not recording. Better stability of the electronics in

Energy scale validation 22/04/13Henric Wilkens (CERN) The electromagnetic energy scale is studied with muons: cosmics, scraping beams, and collisions. Shown in the table is dE/dx [MeV/mm] for data and monte carlo for the cosmic muon analysis. Study with muons from W decays in pp collisions is ongoing. The current uncertainty on the energy scale is 3%. 13

Conclusions The calibration systems were improved and continued to perform well: –Cs and laser calibrations have excellent agreement allowing inter- CS calibrations with laser. –CIS calibration saw only ∼ 0.04% shift over Time in each cell is reconstructed with an average time of 0.30 ns with a RMS of 0.85 ns. The Tile Calorimeter performed very well over the last three years: –99.6% data quality efficiency in –DAQ/DQ inefficiency considerably reduced in the second half of The performance of Tilecal is studied with muons, allowing us to quote a 3% uncertainty. We work on improving this number. 22/04/13Henric Wilkens (CERN)14