GTStrudl Damping Models for Dynamic Analysis

Slides:



Advertisements
Similar presentations
Module 2 Modal Analysis ANSYS Dynamics.
Advertisements

NONLINEAR DYNAMIC FINITE ELEMENT ANALYSIS IN ZSOIL :
Analysis and Design of DuPonts Steel Framing Systems Using WinSCADS and GT STRUDL Jeffery A. Stokes, PE E.I. Du Pont De Nemours and Company 20th Annual.
Passive Vibration Control
Tuned Mass Dampers a mass that is connected to a structure
Mechanics Based Modeling of the Dynamic Response of Wood Frame Building By Ricardo Foschi, Frank Lam,Helmut Prion, Carlos Ventura Henry He and Felix Yao.
MDOF SYSTEMS WITH DAMPING General case Saeed Ziaei Rad.
Overview of Loads ON and IN Structures / Machines
Soil-Structure Interaction
Response Spectrum Analysis Enhancements
Beams and Frames.
Training Manual Aug Mode Superposition method allows non- proportional damping Block Lanczos solver enhancements Full harmonic analysis.
Konstantinos Agrafiotis
GTStrudl Training … Nonlinear Geometric Analysis of Structures … Some Practical Fundamentals and Insights Michael H. Swanger Georgia Tech CASE Center June,
Multi-degree-of-freedom System Shock Response Spectrum
Keck Telescope Seismic Upgrade Design Support - Progress Report Frank Kan Andrew Sarawit 4 May 2011 (Revised 5 May 2011)
Example 4.4. No damper TMD at node 2 Tune to mode 1 modal mass =1.25 modal amplitude =1.0 Want equivalent modal damping = 0.1 Requires mbar =.065 The.
Chapter Ten Harmonic Analysis.
1 HOMEWORK 1 1.Derive equation of motion of SDOF using energy method 2.Find amplitude A and tanΦ for given x 0, v 0 3.Find natural frequency of cantilever,
TWO DEGREE OF FREEDOM SYSTEM. INTRODUCTION Systems that require two independent coordinates to describe their motion; Two masses in the system X two possible.
The Craig-Bampton Method
Streamlined Process for Soil-Structure Interaction Analysis of Nuclear Facilities Utilizing GTSTRUDL and MTR/SASSI Wei Li, Michael Perez, Mansour Tabatabaie,
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
Basic structural dynamics II
Spring Topic Outline for Physics 1 Spring 2011.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Elastic and inelastic relations..... mx+cx+Q(x)= -ma x Q x Q Q=kx elasticinelastic.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Static Pushover Analysis
GTSTRUDL 27 This latest version of GTSTRUDL includes numerous new features, feature enhancements, error corrections, and prerelease features. GTSTRUDL.
85M102006D. Seismic Analysis for a Turbine Building with Spring Supported Turbine / Generator Deck Feifei Lu, PE Shaw Power Group, Charlotte, NC June.
Bentley RM Bridge Seismic Design and Analysis
Introduction of Floor Vibration for Steel Structures ENCE710 – Advanced Steel Structures C. C. Fu, Ph.D., P.E. Department of Civil & Environmental Engineering.
Using GSA & Compos for dynamic and footfall analysis 1 Footfall induced vibration analysis using Compos Thomas Li (Software Technology Group)
Simple Harmonic Motion Oscillatory Systems §Periodic motion §Elasticity §Inertia §Interchange of energies §Examples: l Mass on helical spring l Cantilever.
1 Efficient Mode Superposition Methods for Non-Classically Damped System Sang-Won Cho, Graduate Student, KAIST, Korea Ju-Won Oh, Professor, Hannam University,
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced.
A PPLIED M ECHANICS Lecture 06 Slovak University of Technology Faculty of Material Science and Technology in Trnava.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
PAT328, Section 3, March 2001MAR120, Lecture 4, March 2001S14-1MAR120, Section 14, December 2001 SECTION 14 STRUCTURAL DYNAMICS.
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
*Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee *Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee Structural Dynamics & Vibration Control Lab. Structural Dynamics.
PAST, PRESENT AND FUTURE OF EARTHQUAKE ANALYSIS OF STRUCTURES By Ed Wilson Draft dated 8/15/14 September SEAONC Lectures #2.
Two-degree-of-freedom System with Translation & Rotation
Response of MDOF structures to ground motion 1. If damping is well-behaving, or can be approximated using equivalent viscous damping, we can decouple.
Friction Bearing Base Isolation
Center of Gravity The balance point of an object.
MODULE 08 MULTIDEGREE OF FREEDOM SYSTEMS. 2 Structure vibrating in a given mode can be considered as the Single Degree of Freedom (SDOF) system. Structure.
DEWEK 2004 Lecture by Aero Dynamik Consult GmbH, Dipl. Ing. Stefan Kleinhansl ADCoS – A Nonlinear Aeroelastic Code for the Complete Dynamic Simulation.
Vibrationdata Synthesizing a Time History to Satisfy a Power Spectral Density using Random Vibration Unit 14 1.
SCHEDULE 8:30 AM 10:30 AM Session I 11:00 AM Break 12:15 PM Session II 1:30 PM Lunch 2:45 PM Session III 3:15 PM 4:30 PM Session IV.
Transient Dynamic Analysis
RELIABLE DYNAMIC ANALYSIS OF TRANSPORTATION SYSTEMS Mehdi Modares, Robert L. Mullen and Dario A. Gasparini Department of Civil Engineering Case Western.
Mode Superposition Module 7. Training Manual January 30, 2001 Inventory # Module 7 Mode Superposition A. Define mode superposition. B. Learn.
ISEC-02 Second International Structural Engineering and Costruction Conference September 22-26,2003, Rome “EVALUATION AND RESULTS’ COMPARISON IN DYNAMIC.
Basics of Earthquakes Frequency
1 March 22, 2002Singapore, Elgamal Response Spectrum Ahmed Elgamal.
Simple Harmonic Motion
MESB 374 System Modeling and Analysis Translational Mechanical System
CONFIDENTIAL PRIVATE INFORMATION
CHAPTER 2 - EXPLICIT TRANSIENT DYNAMIC ANALYSYS
Rectangular & Circular Plate Shock & Vibration
Dr-Ing Asrat Worku, AAIT
فصل اول 1- پیشگفتار 2- کلیات خوشا پیشگفتار: از دستاورد های امروزه مهندسی زلزله و سازه ، می توان طراحی سازه ها بر مبنای عملکرد را بر شمرد که اولا.
1C9 Design for seismic and climate changes
3 General forced response
Ch. 12 Waves pgs
Modified Sturm Sequence Property for Damped Systems
November 5, 2002 SE 180 Final Project.
Presentation transcript:

GTStrudl Damping Models for Dynamic Analysis Michael H. Swanger, Ph.D. CASE Center Georgia Tech

Topics Background Simple Modal Damping Weighted Average Composite Modal Damping Rayleigh Proportional Damping The Viscous Damper Element General Composite Modal Damping New Damping Models/Functions

Background

Simple Modal Damping DAMPING RATIOS 0.05 5 0.03 7 0.02 10 TRANSIENT LOAD ‘TH1’ SUPPORT ACCELERATION TRANSLATION X FILE ‘ELCENTRO’ INTEGRATE FROM 0.0 TO 55.0 AT 0.01 END LOAD LIST ‘TH1’ PERFORM TRANSIENT ANALYSIS RESPONSE SPECTRUM LOAD ‘RS1’ TRANSLATION X 1.0 FILE ‘RSCurve1’ LOAD LIST ‘RS1’ PERFORM RESPONSE SPECTRUM ANALYSIS

Simple Modal Damping Frequency-dependent Damping Ratios Per NRC Reg. 1 Simple Modal Damping Frequency-dependent Damping Ratios Per NRC Reg. 1.61, March 2007

Simple Modal Damping STORE RESPONSE SPECTRUM … Design Response Spectrum per FEMA 356

Simple Modal Damping UNITS IN LBS CYC SEC StdMASS CREATE RESPONSE SPECTRUM ACCELERATION LINEAR VS FREQUENCY LINEAR FILE 'RS1‘ FREQUENCY RANGE FROM 0.10000 TO 40.00000 AT 0.10000 DAMPING RATIOS 0.01 0.06 0.15 USE ACCELERATION TIME HISTORY FILES 'ELCENTRO' INTEGRATE USING DUHAMEL DIVISOR 20.00000 END OF CREATE RESPONSE SPECTRUM

Weighted Average Composite Modal Damping

Weighted Average Composite Modal Damping Recommended Modal Damping Values per NRC Reg. 1.61, March 2007

Weighted Average Composite Modal Damping UNITS INCHES KIPS JOINT RELEASES GROUP 'support' KFX 5.0 DFX 0.04 INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 DAMPING 0.04 CONSTANTS MODAL DAMPING PROPORTIONAL TO STIFFNESS 0.04 MEMBERS GROUP 'beams' MODAL DAMPING PROPORTIONAL TO STIFFNESS 0.04 MEMBERS GROUP 'columns‘ eigenvalue analysis DYNAMIC PARAMETERS RESPONSE DAMPING STIFFNESS 1.0 MASS 0.0 END COMPUTE MODAL DAMPING RATIOS AVERAGE

Weighted Average Composite Modal Damping Uniform Damping, Damping Ratios: All Components 4% TYPE PLANE FRAME XY MATERIAL STEEL OUTPUT LONG NAME UNITS INCHES KIPS JOINT COORDINATES $ Name X coord Y coord $ -------- ----------------- ----------------- 1 X 0.00000 Y 0.00000 2 X 120.00000 Y 0.00000 . 18 X 240.00000 Y 360.00000 19 X 360.00000 Y 360.00000 20 X 480.00000 Y 360.00000 DEFINE GROUP 'support' ADD JOINTS 1 to 5 STATUS SUPPORT JOINT GROUP 'support' $* ** $* ** Modal damping ratio for spring support $* ** stiffnesses JOINT RELEASES GROUP 'support' KFX 5.0 DFX 0.04

Weighted Average Composite Modal Damping $* ** $* ** Eigenvalue analysis INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 EIGENVALUE PARAMETERS SOLVE USING GTLANCZOS NUMBER OF MODES 20 PRINT MAX END DYNAMIC ANALYSIS EIGENVALUE $* ** Compute weighted average composite modal $* ** damping ratios DYNAMIC PARAMETERS RESPONSE DAMPING STIFFNESS 1.0 COMPUTE MODAL DAMPING RATIOS AVERAGE $* ** Response spectrum analsis UNITS INCHES CYCLES CREATE RESPONSE SPECTRUM ACCELERATION LIN VS FREQUENCY LIN FILE 'RS' FREQUENCY RANGE FROM 1.00000 TO 40.00000 AT 1.00000 DAMPING RATIOS 0.04 USE ACCELERATION TIME HISTORY FILES 'ELCENTRO' INTEGRATE USING DUHAMEL DIVISOR 20.00000 END OF CREATE RESPONSE SPECTRUM MEMBER INCIDENCES $ Name Start joint End joint $ -------- -------- -------- $ Columns 1 1 6 2 6 11 3 11 16 4 2 7 . 23 14 15 24 16 17 25 17 18 26 18 19 27 19 20 DEFINE GROUP 'columns' ADD MEMBERS 1 TO 15 DEFINE GROUP 'beams' ADD MEMBERS 16 TO 27 MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53' $* ** $* ** Damping ratios for member structural $* ** stiffness damping CONSTANTS MODAL DAMPING PROPORTIONAL TO STIFFNESS 0.04 - MEMBERS GROUP 'beams' GROUP 'columns'

Weighted Average Composite Modal Damping RESPONSE SPECTRUM LOAD 'RS1' SUPPORT ACCELERATION TRANSLATION X 1.0 FILE 'RS' END PERFORM RESPONSE SPECTRUM ANALYSIS COMPUTE RESPONSE SPECTRUM DISPLACEMENTS OUTPUT MODAL CONTRIBUTIONS ON LIST RESPONSE SPECTRUM DISPL JOINT 16 $* ** $* ** Mode superposition transient analysis TRANSIENT LOAD ‘TH1’ TRANSLATION X FILE ‘ELCENTRO’ INTEGRATE FROM 0.0 TO 10.0 AT 0.01 PERFORM TRANSIENT ANALYSIS LIST TRANSIENT MAX DISPL JOINT 16 RS Analysis, 4% Uniform TH Analysis, 4% Uniform TH Analysis, No Damping

Weighted Average Composite Modal Damping Damping Ratios (non-uniform): Beams 5%, Columns 3%, Foundation 10% TYPE PLANE FRAME XY MATERIAL STEEL OUTPUT LONG NAME UNITS INCHES KIPS JOINT COORDINATES $ Name X coord Y coord $ -------- ----------------- ----------------- 1 X 0.00000 Y 0.00000 2 X 120.00000 Y 0.00000 . 18 X 240.00000 Y 360.00000 19 X 360.00000 Y 360.00000 20 X 480.00000 Y 360.00000 DEFINE GROUP 'support' ADD JOINTS 1 to 5 STATUS SUPPORT JOINT GROUP 'support' $* ** $* ** Modal damping ratio for spring support $* ** stiffnesses JOINT RELEASES GROUP 'support' KFX 5.0 DFX 0.10

Weighted Average Composite Modal Damping $* ** $* ** Eigenvalue analysis INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 EIGENVALUE PARAMETERS SOLVE USING GTLANCZOS NUMBER OF MODES 20 PRINT MAX END DYNAMIC ANALYSIS EIGENVALUE $* ** Compute weighted average composite modal $* ** damping ratios DYNAMIC PARAMETERS RESPONSE DAMPING STIFFNESS 1.0 COMPUTE MODAL DAMPING RATIOS AVERAGE $* ** Response spectrum analsis UNITS INCHES CYCLES CREATE RESPONSE SPECTRUM ACCELERATION LIN VS FREQUENCY LIN FILE 'RS' FREQUENCY RANGE FROM 1.00000 TO 40.00000 AT 1.00000 DAMPING RATIOS 0.01 0.07 0.15 USE ACCELERATION TIME HISTORY FILES 'ELCENTRO' INTEGRATE USING DUHAMEL DIVISOR 20.00000 END OF CREATE RESPONSE SPECTRUM MEMBER INCIDENCES $ Name Start joint End joint $ -------- -------- -------- $ Columns 1 1 6 2 6 11 3 11 16 4 2 7 . 23 14 15 24 16 17 25 17 18 26 18 19 27 19 20 DEFINE GROUP 'columns' ADD MEMBERS 1 TO 15 DEFINE GROUP 'beams' ADD MEMBERS 16 TO 27 MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53' $* ** $* ** Damping ratios for member structural $* ** stiffness damping CONSTANTS MODAL DAMPING PROPORTIONAL TO STIFFNESS 0.05 - MEMBERS GROUP 'beams' MODAL DAMPING PROPORTIONAL TO STIFFNESS 0.03 - GROUP 'columns'

Weighted Average Composite Modal Damping RESPONSE SPECTRUM LOAD 'RS1' SUPPORT ACCELERATION TRANSLATION X 1.0 FILE 'RS' END PERFORM RESPONSE SPECTRUM ANALYSIS COMPUTE RESPONSE SPECTRUM DISPLACEMENTS OUTPUT MODAL CONTRIBUTIONS ON LIST RESPONSE SPECTRUM DISPL JOINT 16 $* ** $* ** Mode superposition transient analysis TRANSIENT LOAD ‘TH1’ TRANSLATION X FILE ‘ELCENTRO’ INTEGRATE FROM 0.0 TO 10.0 AT 0.01 PERFORM TRANSIENT ANALYSIS LIST TRANSIENT MAX DISPL JOINT 16 WtAvgCMD, Non-Uniform, KFX = 50 k WtAvgCMD, Non-Uniform, KFX = 1 k

Rayleigh Proportional Damping

Rayleigh Proportional Damping Classical Damping = 5% at ω = 3.16 Hz and 100 Hz DAMPING PROPORTIONAL TO STIFFNESS 1.5271E-4 MASS 1.9238 Non-classical Damping at ω =3.16 Hz and 100 Hz Beams and columns 5% Supports 15% CONSTANTS RAYLEIGH DAMPING PROPORTIONAL TO STIFFNESS 1.5271E-4 - MEMBERS GROUP LIST 'beams‘ ‘columns’ RAYLEIGH DAMPING PROPORTIONAL TO MASS 1.9238 MEMBERS 6 TO 20 GROUP ‘ beams’ RAYLEIGH DAMPING PROPORTIONAL TO MASS 5.7714 MEMBERS 1 TO 5 UNITS INCHES KIPS JOINT RELEASES 1 TO 5 KFX 5.0 DFX 4.5813E-4

Rayleigh Proportional Damping Classical Damping TYPE PLANE FRAME XY MATERIAL STEEL OUTPUT LONG NAME UNITS INCHES KIPS JOINT COORDINATES $ Name X coord Y coord $ -------- ----------------- ----------------- 1 X 0.00000 Y 0.00000 2 X 120.00000 Y 0.00000 . 18 X 240.00000 Y 360.00000 19 X 360.00000 Y 360.00000 20 X 480.00000 Y 360.00000 DEFINE GROUP 'support' ADD JOINTS 1 to 5 STATUS SUPPORT JOINT GROUP 'support‘ JOINT RELEASES GROUP 'support' KFX 5.0

Rayleigh Proportional Damping Classical Damping MEMBER INCIDENCES $ Name Start joint End joint $ -------- -------- -------- $ Columns 1 1 6 2 6 11 3 11 16 4 2 7 . 23 14 15 24 16 17 25 17 18 26 18 19 27 19 20 DEFINE GROUP 'columns' ADD MEMBERS 1 TO 15 DEFINE GROUP 'beams' ADD MEMBERS 16 TO 27 MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53‘ INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 $* ** $* ** Rayleigh proportional damping for $* ** structural damping at 0.05 for $* ** w = 19.84 rad/sec (3.16 Hz) and $* ** 635 rad/sec (100 Hz) DAMPING PROPORTIONAL TO STIFFNESS 1.5271E-4 MASS 1.9238 $* ** $* ** Perform direct integration time history $* ** analysis UNITS INCHES CYCLES TRANSIENT LOAD 'T1' SUPPORT ACCELERATION TRANSLATION X FILE ‘ELCENTRO’ INTEGRATE FROM 0.0 TO 10.0 AT 0.01 END DYNAMIC ANALYSIS PHYSICAL NEWMARK BETA 0.25 LIST TRANSIENT MAX DISPL JOINTS 1 16 Rayleigh Damping, Classical, Physical Analysis No Rayleigh Damping, Physical Analysis Modal TH Analysis, 5% Uniform Damping

Rayleigh Proportional Damping Non-classical Damping TYPE PLANE FRAME XY MATERIAL STEEL OUTPUT LONG NAME UNITS INCHES KIPS JOINT COORDINATES $ Name X coord Y coord $ -------- ----------------- ----------------- 1 X 0.00000 Y 0.00000 2 X 120.00000 Y 0.00000 . 18 X 240.00000 Y 360.00000 19 X 360.00000 Y 360.00000 20 X 480.00000 Y 360.00000 DEFINE GROUP 'support' ADD JOINTS 1 to 5 STATUS SUPPORT JOINT GROUP 'support‘ $* ** $* ** Rayleigh damping factor for spring support $* ** stiffnesses corresponding to 15% damping in $* ** the support for w = 19.84 rad/sec (3.16 Hz) and $* ** 635 rad/sec (100 Hz) JOINT RELEASES GROUP 'support' KFX 5.0 DFX 4.5813E-4

Rayleigh Proportional Damping Non-classical Damping MEMBER INCIDENCES $ Name Start joint End joint $ -------- -------- -------- $ Columns 1 1 6 2 6 11 3 11 16 4 2 7 . 23 14 15 24 16 17 25 17 18 26 18 19 27 19 20 DEFINE GROUP 'columns' ADD MEMBERS 1 TO 15 DEFINE GROUP 'beams' ADD MEMBERS 16 TO 27 MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53‘ INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 $* ** $* ** Rayleigh damping factors for joint and member $* ** inertias corresponding to 15% damping in the $* ** support and 5% elsewhere for w = 19.84 rad/sec $* ** (3.16 Hz) and 635 rad/sec (100 Hz) 1 to 5 TRANSL ALL 0.5 DAMPING 5.7714 6 TO 20 TRANSL ALL 0.5 DAMPING 1.9238 CONSTANTS RAYLEIGH DAMPING PROPORTIONAL TO MASS 5.7714 - MEMBERS 1 TO 5 RAYLEIGH DAMPING PROPORTIONAL TO MASS 1.9238 - MEMBERS 6 TO 15 GROUP 'beams' $* ** $* ** Rayleigh damping for member stiffnesses at 5% $* ** for w = 19.84 rad/sec (3.16 Hz) and $* ** 635 rad/sec (100 Hz) RAYLEIGH DAMPING PROPORTIONAL TO STIFFNESS 1.5271E-4 - GROUP LIST 'beams' 'columns'

Rayleigh Proportional Damping Non-classical Damping $* ** $* ** Perform direct integration time history $* ** analysis UNITS INCHES CYCLES TRANSIENT LOAD 'TH1' SUPPORT ACCELERATION TRANSLATION X FILE 'ELCENTRO' INTEGRATE FROM 0.0 TO 10.0 AT 0.01 END DYNAMIC ANALYSIS PHYSICAL NEWMARK BETA 0.25 LIST TRANS MAX DISPL JOINT 1 16 Rayleigh Damping, Non-Classical, Physical Analysis Rayleigh Damping, Classical, Physical Analysis

The Viscous Damper Element

The Viscous Damper Element MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53‘ INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 $* ** $* ** Rayleigh proportional damping for $* ** structural damping at 0.05 for $* ** w = 19.84 rad/sec (3.16 Hz) and $* ** 635 rad/sec (100 Hz) DAMPING PROPORTIONAL TO STIFFNESS 1.5271E-4 - MASS 1.9238 $* ** Viscous damper elements at supports DAMPING ELEMENT DATA 'DE1' INC 1 GLOBAL CTX 1.E4 'DE2' INC 2 GLOBAL CTX 1.E4 'DE3' INC 3 GLOBAL CTX 1.E4 'DE4' INC 4 GLOBAL CTX 1.E4 'DE5' INC 5 GLOBAL CTX 1.E4 END

The Viscous Damper Element $* ** $* ** Perform direct integration time history $* ** analysis UNITS INCHES CYCLES TRANSIENT LOAD 'TH1' SUPPORT ACCELERATION TRANSLATION X FILE 'ELCENTRO' INTEGRATE FROM 0.0 TO 10.0 AT 0.01 END DYNAMIC ANALYSIS PHYSICAL NEWMARK BETA 0.25 LIST TRANS MAX DISPL JOINT 16 Viscous Damping, CTX = 1.e7 lb Viscous Damping, CTX = 100 lb

General Composite Modal Damping

General Composite Modal Damping . DEFINE GROUP 'support' ADD JOINTS 1 to 5 STATUS SUPPORT JOINT GROUP 'support' JOINT RELEASES GROUP 'support' KFX 5.0 MEMBER INCIDENCES $ Name Start joint End joint $ -------- -------- -------- $ Columns 1 1 6 2 6 11 MEMBER PROPERTIES GROUP 'beams' T 'WBEAM9' 'W18x35' GROUP 'columns' T 'WCOLUMN9' 'W14x53' $* ** $* ** Define damping properties for modal $* ** damping ratio computation: $* ** Rayleigh damping factors for structural $* ** damping at 0.05 for w = 19.4 rad/sec (3.16 Hz) $* ** and 635 rad/sec (100 Hz) DAMPING PROPORTIONAL TO STIFFN 1.5271E-4 - MASS 1.9238 $* ** Viscous damper elements at supports DAMPING ELEMENT DATA 'DE1' INC 1 GLOBAL CTX 1.E4 'DE2' INC 2 GLOBAL CTX 1.E4 'DE3' INC 3 GLOBAL CTX 1.E4 'DE4' INC 4 GLOBAL CTX 1.E4 'DE5' INC 5 GLOBAL CTX 1.E4 END PRINT DAMPING ELEMENT DATA $* ** Eigenvalue analysis INERTIA OF JOINTS LUMPED INERTIA OF JOINTS WEIGHT EXISTING TRANSL ALL 0.5 EIGENVALUE PARAMETERS SOLVE USING GTLANCZOS NUMBER OF MODES 20 PRINT MAX DYNAMIC ANALYSIS EIGENVALUE

General Composite Modal Damping $* ** $* ** Compute modal damping ratios assuming $* ** classical proportional damping COMPUTE MODAL DAMPING RATIOS PROPORTIONAL INCLUDE COUPLING ALL $* ** Mode superposition transient analysis UNITS INCHES CYCLES TRANSIENT LOAD 'TH1' SUPPORT ACCELERATION TRANSLATION X FILE 'ELCENTRO' INTEGRATE FROM 0.0 TO 10.0 AT 0.01 END PERFORM TRANSIENT ANALYSIS LIST TRANSIENT MAX DISPL JOINT 16 DYNAMIC ANALYSIS PHYSICAL NEWMARK BETA 0.25 LIST TRANS MAX DISPL JOINT 16 General Composite modal damping, No CTX General Composite modal damping, CTX = 1.e7 lb General Composite modal damping, CTX = 100 lb

General Composite Modal Damping DAMPING PROPORTIONAL TO STIFFN 1.5271E-4 MASS 1.9238 COMPUTE MODAL DAMPING RATIOS PROPORTIONAL

New Damping Models/Functions Direct Computation of “Rayleigh” Damping Ratios Caughey Damping

New Damping Models/Functions Superposition of Modal Damping Matrices