H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.

Slides:



Advertisements
Similar presentations
Molecular Gas and Star Formation in Dwarf Galaxies Alberto Bolatto Research Astronomer UC Berkeley Adam Leroy* Adam Leroy* Josh Simon* Josh Simon* Leo.
Advertisements

A simple model to explain the high gas content of galaxy UGC 8802 Ruixiang Chang Shanghai Astronomical Observatory Collaborators: Jinliang Hou Shiyin Shen.
Dust in Dwarf Galaxies Adam Leroy N ATIONAL R ADIO A STRONOMY O BSERVATORY HERITAGE (Meixner et al.)
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University Hubble Fellows Symposium, April 21, 2006 Collaborators: Rob Crockett (Princeton),
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
Properties of the Structures formed by Parker-Jeans Instability Y.M. Seo 1, S.S. Hong 1, S.M. Lee 2 and J. Kim 3 1 ASTRONOMY, SEOUL NATIONAL UNIVERSITY.
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
The Complex Star Formation History of NGC 1569 L. Angeretti 1, M. Tosi 2, L. Greggio 3, E. Sabbi 1, A. Aloisi 4, C. Leitherer 4 The object The observations.
Sub-mm/mm astrophysics: How to probe molecular gas
Jonathan Slavin Harvard-Smithsonian CfA
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Studying the Atomic-Molecular Transition in the Local Group Erik Rosolowsky Radio Astronomy Lab, UC Berkeley Ringberg - May 19, 2004.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
Star Formation: Near and Far Neal J. Evans II with Rob Kennicutt.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Atomic and Molecular Gas in Galaxies Mark Krumholz UC Santa Cruz The EVLA: Galaxies Through Cosmic Time December 18, 2008 Collaborators: Sara Ellison (U.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
1 Lessons from cosmic history Star formation laws and their role in galaxy evolution R. Feldmann UC Berkeley see Feldmann 2013, arXiv:
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
Dwarf LSB galaxies in the Virgo cluster Jonathan Davies.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
The shapes of the THINGS HI profiles Presented by : Ianjamasimanana Roger Supervisor : Erwin de Blok UNIVERSITY OF CAPE TOWN.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
An Investigation of the Molecular-FIR-Radio correlation at small scales in the Galaxy Mónica Ivette Rodríguez Dr. Laurent Loinard (UNAM - México) Dr. Tommy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Jet Propulsion Laboratory
Star Formation in Damped Lyman alpha Systems Art Wolfe Collaborators: J.X. Prochaska, J. C. Howk, E.Gawiser, and K. Nagamine.
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
Star Formation and H2 in Damped Lya Clouds
Nearby Galaxies: What Next? D. Calzetti (Univ. of Massachusetts) and the LEGUS Team HUBBLE2020: Hubble’s 25 th Anniversary Symposium.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
Sébastien Muller (ASIAA, Taiwan) M. Guélin (IRAM) M. Dumke (ESO) R. Lucas (IRAM) Probing isotopic ratios at z=0.89 Molecular line absorptions in front.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
Flow-Driven Formation of Molecular Clouds: Insights from Numerical Models The Cypress Cloud, Spitzer/GLIMPSE, FH et al. 09 Lee Hartmann Javier Ballesteros-Paredes.
Towards Realistic Modeling of Massive Star Clusters Oleg Gnedin (University of Michigan) graduate student Hui Li.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Nicolette Pekeur (UCT) Supervisors: Prof
IMF inferred based on field stars (red) and based on a variety of clusters (blue, green, and black) (Kroupa 2002)
Properties of the thinnest cold HI clouds in the diffuse ISM
Spatial Distribution of Molecules in Damped Lya Clouds
Presentation transcript:

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory

Motivation (2) Theory Krumholz et al. (2009) Analytic solution for H 2 content in an atomic-molecular complex No direct comparison to individual molecular clouds in the MW! (1) Observations Strong correlation between star formation rate and H 2 surface density Constant SF efficiency in molecular clouds Ability to form H 2 controls the evolution of individual galaxies! log Σ SFR (M  yr -1 kpc -2 ) log Σ H2 (M  pc -2 ) 30 nearby spiral galaxies Bigiel et al. (2011) A high resolution study of the HI–H 2 transition across a molecular cloud Estimate R H2 = Σ H2 / Σ HI Investigate how R H2 spatially changes Perseus molecular cloud D ~ 300 pc and solar Z Low mass (~10 4 M  ) with intermediate SF

Background: Analytic Modeling of H 2 Formation in a PDR Krumholz et al. (2009; KMT) model H2H2 CNM Pressure equilibrium with WNM Sharp HI-H 2 transition Uniform isotropic ISRF Equilibrium H 2 formation: Formation on dust grains = Photodissociation by LW photons

Background: Analytic Modeling of H 2 Formation in a PDR KMT's predictions: R H2 is determined by CNM property, metallicity, gas surface density, and is independent of ISRF. log Σ HI + Σ H2 (M  pc -2 ) log Σ HI (M  pc -2 ) M H2 / M (1) Minimum Σ HI to shield H 2 against ISRF Σ HI ~ 10 M  pc -2 for solar Z (2) H 2 -to-HI ratio (R H2 ) 10 M  pc -2

IRAS 100 μm image (~4.3': ~0.4 pc at D = 300 pc) GALFA-HI N(HI) image (~4') R H2 = Σ H2 / Σ HI for Perseus Σ HI : GALFA-HI DR1 data Σ H2 : IRAS 60, 100 μm, Schelegel et al. T dust, 2MASS A V images

R H2 image 12 CO contours Dark regions Star-forming regions B5 B1E B1 IC348 NGC1333 Lee et al. (2011, submitted)

Σ HI vs Σ HI + H2 1) Uniform Σ HI ~ 6–8 M  pc -2 General results Consistent with KMT's prediction of Σ HI ~ 10 M  pc -2 for solar Z! 2) No detection of turnover HI envelopes are highly extended (> 30 pc)! Σ HI (M  pc -2 ) Σ HI + Σ H2 (M  pc -2 ) 3σ IC348 (Star-forming region) HI-dominatedH 2 -dominated Σ HI (M  pc -2 ) Σ HI + Σ H2 (M  pc -2 ) 3σ B1E (Dark region) HI-dominated H 2 -dominated

R H2 vs Σ HI + H2 5) HI–H 2 transition (R H2 ~ 0.25) at N(HI + H 2 ) = (8–10) × cm -2 Consistent with previous estimates in the Galaxy (e.g., Savage et al. 1977)! B1E (Dark region) R H2 = Σ H2 / Σ HI Σ HI + Σ H2 (M  pc -2 ) IC348 (Star-forming region) R H2 = Σ H2 / Σ HI Σ HI + Σ H2 (M  pc -2 ) 3σ General results 4) Best-fit parameter Φ CNM = 6– 10 T CNM ~ 70 K, consistent with observed CNM properties (Heiles & Troland 2003)! 3) Agreement with KMT on sub-pc scales

Discussion: Equilibrium vs Non-equilibrium H 2 Formation Equilibrium H 2 formation τ H2 = 10–30 Myr (e.g., Goldsmith et al. 2007) ≥ Lifetime of GMCs Role of turbulence: non-equilibrium H 2 formation? Time (Myr) R H2 = Σ H2 / Σ HI Mac Low & Glover (2011) Equilibrium: R H2 ~ constant Non-equilibrium: R H2 keeps increasing Turbulence may play a secondary role!

Discussion: Importance of WNM / Internal Radiation Field Importance of WNM for shielding H 2  Importance of internal RF T dust image Lee et al. (2011, submitted) T dust ~ 17 K KMT: all CNM Perseus: WNM about 50% Perseus – Uniform external RF, negligible internal RF

Summary 1) The dark and star-forming regions have uniform Σ HI ~ 6–8 M  pc -2. 2) The purely HI envelopes are highly extended (> 30 pc). 3) HI–H 2 transition occurs at N(HI) + 2N(H 2 ) = (8–10) × cm -2. 4) KMT's equilibrium model captures the fundamental principles of H 2 formation on sub-pc scales! 5) The importance of WNM for H 2 shielding, internal RF, and the timescale for H 2 formation still remain as open questions.