Effects of galaxy formation on dark matter haloes Susana Pedrosa Patricia Tissera, Cecilia Scannapieco Chile 2010.

Slides:



Advertisements
Similar presentations
Cosmological Structure Formation A Short Course III. Structure Formation in the Non-Linear Regime Chris Power.
Advertisements

Fu Jian Max Planck Institute for Astrophysics, Garching 18/12/
The Role of Dissipation in Galaxy Mergers Sadegh Khochfar University of Oxford.
By: Avishai Dekel and Joseph Silk Presented By: Luke Hovey.
Survival or disruption of CDM micro-haloes: implications for detection experiments Collaborators: Oleg Y. Gnedin, Ben Moore, Jürg Diemand and Joachim Stadel.
GALAXIES IN DIFFERENT ENVIRONMENTS: VOIDS TO CLUSTERS:  Simulations will require to model full physics:  Cooling, heating, star formation feedbacks…
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
Where will supersymmetric dark matter first be seen? Liang Gao National observatories of China, CAS.
ANGULAR MOMENTUM AND THE STRUCTURE OF DM HALOS Chiara Tonini Special guest: Andrea Lapi Director: Paolo Salucci C.T., A. Lapi & P. Salucci (astro-ph/ ,
Clusters & Super Clusters Large Scale Structure Chapter 22.
The Distribution of DM in Galaxies Paolo Salucci (SISSA) TeVPa Paris,2010.
Numerical issues in SPH simulations of disk galaxy formation Tobias Kaufmann, Lucio Mayer, Ben Moore, Joachim Stadel University of Zürich Institute for.
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
The two phases of massive galaxy formation Thorsten Naab MPA, Garching UCSC, August, 2010.
Merger Histories of LCDM Galaxies: Disk Survivability and the Deposition of Cold Gas via Mergers Kyle Stewart AAS Dissertation Talk 213 th AAS Meeting.
Three-dimensional hydrodynamical simulations of ISM pollution by type Ia and II supernovae in forming dwarf spheroidal galaxies Andrea Marcolini (Bologna.
Simon Portegies Zwart (Univ. Amsterdam with 2 GRAPE-6 boards)
Numerical Modeling of Hierarchical Galaxy Formation Cole, S. et al. 2000, MNRAS 319, Adam Trotter December 4, 2007 Astronomy 704, UNC-Chapel Hill,
Are Galactic Winds Shaping the Properties of Dwarf Galaxies? Konstantinos Tassis The University of Chicago Andrey Kravtsov University of Chicago Nick GnedinFermilab,
Cosmological N-body simulations of structure formation Jürg Diemand, Ben Moore and Joachim Stadel, University of Zurich.
Dark Matter and Galaxy Formation (Section 3: Galaxy Data vs. Simulations) Joel R. Primack 2009, eprint arXiv: Presented by: Michael Solway.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
Alternative gravity vs.  CDM Jerry Sellwood. Settling the argument Requires clear predictions that distinguish one from the other –consistency with one.
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
The Effect of Baryons and Dissipation on the Matter Power Spectrum Douglas Rudd (KICP, U. Chicago) Andrew Zentner & Andrey Kravtsov astro-ph/
MODELING INTRACLUSTER MEDIUM AND DARK MATTER IN GALAXY CLUSTERS Elena Rasia Dipartimento di Astronomia Università di Padova Padova, April 9th, 2002.
A.Kravtsov (U.Chicago) D. Ceverino (NMSU) O. Valenzuela (U.Washington) G. Rhee (UNLV) F. Governato, T.Quinn, G.Stinson (U.Washington) J.Wadsley (McMaster,
Galaxy-Galaxy Lensing What did we learn? What can we learn? Henk Hoekstra.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
Cosmological formation of elliptical galaxies * Thorsten Naab & Jeremiah P. Ostriker (Munich, Princeton) T.Naab (USM), P. Johannson (USM), J.P. Ostriker.
 CDM Subhalos P.Nurmi, P.Heinämäki, E. Saar, M. Einasto, J. Holopainen, V.J. Martinez, J. Einasto Subhalos in LCDM cosmological simulations: Masses and.
The Baryon Induced Transformation of CDM Halos Mario G. Abadi Universidad Nacional de Córdoba, CONICET Argentina In collaboration with Julio Navarro and.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
Effects of baryons on the structure of massive galaxies and clusters Oleg Gnedin University of Michigan Collisionless N-body simulations predict a nearly.
(MNRAS 327, 610, 2001 & 347, 1234, 2004) David Churches, Mike Edmunds, Alistair Nelson - Physics & Astronomy, Cardiff University - Physics & Astronomy,
Impact of Early Dark Energy on non-linear structure formation Margherita Grossi MPA, Garching Volker Springel Advisor : Volker Springel 3rd Biennial Leopoldina.
I N T R O D U C T I O N The mechanism of galaxy formation involves the cooling and condensation of baryons inside the gravitational potential well provided.
Σπειροειδείς γαλαξίες
The formation of galactic disks An overview of Mo Mao & White 1998 MNRAS
, Tuorla Observatory 1 Galaxy groups in ΛCDM simulations and SDSS DR5 P. Nurmi, P. Heinämäki, S. Niemi, J. Holopainen Tuorla Observatory E. Saar,
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology Marc Seigar Dec 4th ESO, Santiago.
Cosmological Galaxy Formation
PNe as mass tracers Dark-to-luminous properties of early-type galaxies Nicola R. Napolitano Kapteyn Institute Groningen (NL) ESO workshop: PNe beyond the.
MASS AND ENTROPY PROFILES OF X-RAY BRIGHT RELAXED GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS.
Stellar Feedback Effects on Galaxy Formation Filippo Sigward Università di Firenze Dipartimento di Astronomia e Scienza dello Spazio Japan – Italy Joint.
TEMPERATURE AND DARK MATTER PROFILES OF AN X-RAY GROUP SAMPLE FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK.
TEMPERATURE AND DARK MATTER PROFILES OF AN X-RAY GROUP SAMPLE FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK.
3 Mass profiles We use the temperature and gas density values obtained by fits to the spectra extracted in concentric annuli to calculate the gravitating.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
MNRAS, submitted. Galaxy evolution Evolution in global properties reasonably well established What drives this evolution? How does it depend on environment?
Zheng Dept. of Astronomy, Ohio State University David Weinberg (Advisor, Ohio State) Andreas Berlind (NYU) Josh Frieman (Chicago) Jeremy Tinker (Ohio State)
Anisotropies in the gamma-ray sky Fiorenza Donato Torino University & INFN, Italy Workshop on High-Energy Messengers: connecting the non-thermal Extragalctic.
On the other hand.... CDM simulations consistently produce halos that are cusped at the center. This has been known since the 1980’s, and has been popularized.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Title Galaxy Structure and Dark Matter Michael Merrifield University of Nottingham.
The influence of baryons on the matter distribution and shape of dark matter halos Weipeng Lin , Yipeng Jing ( Shanghai Astronomical Observatory , CAS.
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
Present-Day Descendants of z=3.1 Ly  Emitting (LAE) Galaxies in the Millennium-II Halo Merger Trees Jean P. Walker Soler – Rutgers University Eric Gawiser.
Dark matter Phase Transition constrained at Ec = O(0.1) eV by LSB rotation curve Jorge Hiram Mastache de los Santos Dr. Axel de la Macorra Pettersson UNIVERSIDAD.
SPH Simulations of the Galaxy Evolution NAKASATO, Naohito University of Tokyo.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
On the initial conditions and evolution of isolated galaxy models 2012 Workshop on Computational Sciences and Research Hub Induck Hall at Pusan Nat'l University.
On the Cusp of the Dark Matter Sergey Mashchenko Hugh Couchman James Wadsley McMaster University ( Nature 3/8/06; Science 29/11/07 )
Dark Matter Halos A.Klypin. 2 Major codes: GADET Springel, SDM White PKDGRAV - GASOLINE Quinn, Steidel, Wadsley, Governato, Moore ART Kravtsov, Klypin,
The morphology and angular momentum of simulated galaxy populations
THE FIRST GALAXY FORMATION MODEL WITH THE TP-AGB:
By : Sydney Duncan Advisor: Dr. Ferah Munshi 7/30/2015
Presentation transcript:

Effects of galaxy formation on dark matter haloes Susana Pedrosa Patricia Tissera, Cecilia Scannapieco Chile 2010

Introduction Cuspy inner profiles obtained from simulations: not consistent with the observational results found for the rotation velocity of low surface brightness and dwarf galaxies (Flores & Primac 1994; Moore 1994; Dutton et al. 2008; Gnedin & Zao 2002)‏ Overabundance of small DM subhaloes. The universality of the profiles (Navarro et al. 2004; Merrit et al. 2006; Gao et al. 2008; Navarro et al. 2008,N08)‏ Theoretical model for the contraction when baryons are present, Adiabatic Contraction (Blumenthal et al. 1986; Gnedin et al. 2004; Sellwood et al. 2005)‏ Numerical results for the contraction of DM haloes when baryons are present, Tissera & Dominguez Tenreiro (1998); Gnedin et al. (2004); Romano-D í az et al. (2008).

Simulations Set of 6 simulations from the Aquarius project (Springel et al. 2008), Haloes extracted from a cosmological box of 100 Mpc and resimulated with very high resolution (Scannapieco et al. 2009, S09) using GADGET-3, total mass: 5-11x10 11 h -1 M ⊙, Cosmological parameters: Ω Λ =0.75, Ω m =0.25, σ 8 =0.9 and H 0 = 100 h k s -1 Mpc -1, con h=0.73.  1x10 6 particles within r vir with masses of: 10 6 h -1 M ⊙ for the DM and 2x10 5 h -1 M ⊙.for the gas; e g = h -1 kpc. Set of 6 simulations, (Scannapieco et al. 2008, S08) haloes of ~ h -1 M ⊙, resimulated with higher resolution using GADGET-2 (Scannapieco et al y S06)‏. Cosmological parameters: Ω Λ =0.7, Ω m =0.3, Ω b =0.04, σ 8 =0.9 and H 0 = 100 h km s -1 Mpc -1, h=0.7.  10 5 particles within r vir ; Particles masses: DM = 1.6x 10 7 h -1 M ⊙ y gas = 2.4x10 6 h -1 M ⊙.; e g =0.8 h -1 kpc.

Simulations Aquarius Set : Different initial conditions, aprox same baryonic physics: variety of structures and star formation histories. Dominated by stellar populations older than ~ 8 Gyr. Some galaxies have centrifugally supported disks (Aq-C-5, Aq-D-5, Aq- E-5), and one spheroid (Aq-F-5) Results are compared with purely dynamical runs (DMo) of Navarro et al Set S08: All experiments have the same initial conditions while the baryonic physics were varied: they all share the same underlying merger tree, differences are due to the different hydrodynamic evolution of baryons. Varied resulting morphology: NF, C-001: espheroids; E-07, F- 09: important disk component; E-03: thick disk; E3: extreme case with very high E SN, DM dominated.

Density Profiles Spherically averaged within the virial radius. CM: Shrinking Sphere (Power et al. 2003)‏ Better fit by Einasto, 3 parameters n y r _2, y ρ _2. In S08 set ρ _2 fixed with the total mass as constrain. Profiles always more concentrated than the DMo case. NF E07 F09 C001 E03 E3 S08 The level of concentration can be correlated to the formation history. Galaxies that were able to develop a disk: more concentrated profiles, although the ones hosting spheroids are more massive. Key: feedback regulation acting on the galaxy but also on the satellites.

Interaction with satellites Δ v/2 Parameter All haloes increase their concentration with time and the DMo is always less concentrated. NF, C-001: flattened curve -> close approching of satellites E-07, F09 y E3: feedback regulation action: less massive satellites. NF E07 F09 C001 E03 E3 Satellites cumulative mass vs r Feedback regulates the SF in both, the central galaxy and the satellites: spheroids have more massive satellites and they are able to survive further in the halo.

Aquarius density profiles Density increases in the central regions. Baryonic runs: below DMo for large r and above for the inner regions. Inside the peak, aproximately isothemal.

Velocity Dispersion S08: In agreement with Aq, increases in the central regions Systems with higher stellar masses → steeper inner profiles. ti is also lost, except for the DM dominated run, E3 Dependence with z: the inversion is never at place. NF E07 F09 C001 E03 E3 The DM velocity dispersion profiles are strongly affected by baryons: increase in the central regions. Decrease monotonically with radius. The DMo characteristic “temperature inversion” is not present. S08 Aq

The presence of baryons modify the anisotropy. Trend: spheroids tend to have lower levels of anisotropy than their DMo, while disks higher. Aq: baryons affect  in a complicated way: some cases similar shape to the DMo and others result less dominated by radial movements. Velocity Anisotropy Parameter Measure of the internal velocity structure of the haloes. S08 Aq

Pseudo Phase Space Density DMo, follow Bertschinger. With baryons: lower values of α. Larger residuals: espheroids, weaker effects: disks the universality is lost all runs flatten with respect to Bertschinger solution, different levels of discrepancy. changes: mass and velocity redistribution in the central regions. Related with the entropy. Taylor & Navarro (2001): Bertschinger (1985): α ~ Haloes contraction has not been adiabatic S08 Aq

Rotation Velocity Problem in  CDM: inability to reproduce observed rotation curves: enormous concentration of baryons in the central regions. Important disk component at place: total velocity gets flatter within the baryonic dominated region. S08: V max /V vir between 1.15 and 1.5, in better agreement with observations.

Adiabatic Contraction Blumenthal et al. (1986): overstimate the level of concentration in the central regions. Gnedin et al. (2004) and Abadi et al. (2009), better agreement but still overpredict. Discrepancy: haloes contraction depend on the way baryons were collected during galaxy assembly. DMo SPH B86 Gne04 S08 Aq

Conclusions When baryons are present DM density profile become more concentrated than their DMo counterpart. The amount of baryons collected within the inner regions does not by itself determine the response of the DM haloes. Central regions, profiles nearly isothermal. Best fit: Einasto model. Formation history S08: haloes hosting galaxies that were able to develop an important disk structure: profiles more concentrated. Evolution with redshift: all haloes increase their concentration in time. Flattening in the relation: close approach of satellites. Satellite system, spheroids have more massive satellites and survive further in the halo, stars more gravitational bounded. Presence of baryons increase the velocity dispersion within the central regions. No “ temperature inversion ”. For S08, slope increase with increasing baryonic mass.

Conclusions II The phase space density in presence of baryons does not follow Bertschinger; Not consistent with a purely adiabatic contraction of the DM halo. The rotation velocity curves flatten in systems that developed a disk structure: lower the maximum to virial velocity ratio. Comparison with the predicted contraction for different AC models: neither of them provides a good prediction of the contraction, they don't account for the formation history of the galaxy. All our findings indicate that the response of the DM halo to the presence of baryons is the result of the joint evolution of baryons and DM during the assembly of the galaxy.

General trend between  and β. Aquarius: some haloes have linear relation in the central zones, 2e g < r < r _2. For r > r -2 this relation is lost. S08: also the linear relation keep only for the central zones. Hansen & Moore relation

HR Cosmological simulation with DM mass iresolution of 5.93x 10 6 h -1 M ⊙ and 9.12x10 5 h -1 M ⊙ ; factor 4 in particle number. Δ v/2 : get more concentrated with time; where the curve flattens → correlate with the interaction with satellites; Δ v/2 for the spheroid is flatter The general trends agree with the S08 results