Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral.

Slides:



Advertisements
Similar presentations
Metamorphic Phase Diagrams
Advertisements

GOLDSCHMIDT’S RULES 1. The ions of one element can extensively replace those of another in ionic crystals if their radii differ by less than approximately.
Solid Solutions A solid solution is a single phase which exists over a range in chemical compositions. Almost all minerals are able to tolerate variations.
Oxidation and Reduction
Exsolution and Phase Diagrams Lecture 11. Alkali Feldspar Exsolution ‘Microcline’ - an alkali feldspar in which Na- and K-rich bands have formed perpendicular.
Back to silicate structures: nesosilicates inosilicates tectosilicates phyllosilicates cyclosilictaes sorosilicates.
Partition Coefficients Lecture 26. The Partition Coefficient Geochemists find it convenient to define a partition or distribution coefficient of element.
Phase diagrams for melting in the Earth (101): thermodynamic fundamentals Jan Matas Université de Lyon Ecole normale supérieure de Lyon, CNRS CIDER 2010.
Lecture 5 Crystal Chemistry Part 4: Compositional Variation of Minerals 1. Solid Solution 2. Mineral Formula Calculations.
Activities in Non-Ideal Solutions
Igneous Rocks. Classification of Igneous Rocks Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na Calculate Elements as Oxides (Account for O) How Much.
1 Binary Phase Diagrams GLY 4200 Fall, Binary Diagrams Binary diagrams have two components We therefore usually choose to plot both T (temperature)
-4 The Nature of Silicate Melts
Z = proton number = atomic number N = neutron number A = mass number (Z+N) Atomic mass of nuclide = (rest mass – binding energy) relative to 1/12.
Crystal-Melt Equilibria in Magmatic Systems Learning Objectives: –How are crystal-melt equilibria displayed graphically as phase diagrams? –What are the.
Phase Equilibria in Silicate Systems Intro. Petrol. EPSC-212, Francis-13.
Phase Equilibria in Silicate Systems Intro. Petrol. EPSC-212, Francis-14.
Class 7. Mantle Melting and Phase Diagrams William Wilcock OCEAN/ESS 410.
Chapter 6 Interpretation of Phase Diagrams Phase diagrams summarize in graphical form the ranges of temperature (or pressure) and composition over which.
GEOL 295 Physical Chemistry in the Earth Sciences Greg Druschel Delehanty 321 Class times:MWF 9:05 – 9:55 a.m.
Lecture 7 (9/27/2006) Crystal Chemistry Part 6: Phase Diagrams.
How Many Molecules? Pyrite Cube weighs 778 g – how many molecules is that?? About 4,000,000,000,000,000,000,000,000 Are they ALL Iron and Sulfur?
Eutectic and Peritectic Systems
Trace Element Variation Reading: Winter Chapter, pp
The Third E …. Lecture 3. Enthalpy But first… Uniting First & Second Laws First Law:dU = dQ + dW With substitution: dU ≤ TdS – PdV For a reversible change:
Predicting Equilibrium and Phases, Components, Species Lecture 5.
Mineral Stability What controls when and where a particular mineral forms? Commonly referred to as “Rock cycle” Rock cycle: Mineralogical changes that.
A case study: the nepheline basanite UT from Bow Hill in Tasmania, Australia Previous work includes: An experimental study of liquidus phase equilibria.
The Third Law, Absolute Entropy and Free Energy Lecture 4.
Solid solutions Example: Olivine: (Mg,Fe) 2 SiO 4 two endmembers of similar crystal form and structure: Forsterite: Mg 2 SiO 4 and Fayalite: Fe 2 SiO 4.
Stoichiometry Chemical Analyses and Formulas Stoichiometry Chemical analyses of oxygen bearing minerals are given as weight percents of oxides. We need.
Experimental constraints on subduction-related magmatism : Hydrous Melting of upper mantle perdotites Modified after a ppt by Peter Ulmer (Blumone, Adamello,
The Phase Rule and its application. Thermodynamics A system: Some portion of the universe that you wish to study The surroundings: The adjacent part of.
Lab 3. Binary Phase Diagrams. Binary Peritectic System Peritectic point - The point on a phase diagram where a reaction takes place between a previously.
Stoichiometry Some minerals contain varying amounts of 2+ elements which substitute for each other Solid solution – elements substitute in the mineral.
Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral.
Oxidation and Reduction Lecture 9. Law of Mass Action Important to remember our equation describes the equilibrium condition. At non-equilibrium conditions.
Phases, Components, Species & Solutions Lecture 5.
Redox in Magmatic Systems Activities in Non-Ideal Solutions Lecture 10.
Orthopyroxene By Dominic Papineau. The varieties of orthopyroxene Enstatite Clinoenstatite Bronzite Hyperstene Ferrohyperstene Eulite Orthoferrosilite.
The Phase Rule and its application
Activity Coefficients; Equilibrium Constants Lecture 8.
Trace Element Geochemistry Lecture 24. Geochemical Classification.
Magmas Best, Ch. 8. Constitution of Magmas Hot molten rock T = degrees C Composed of ions or complexes Phase –Homogeneous – Separable part.
Pyroxene.
Liquidus Projections for haplo-basalts The Basalt Tetrahedron at 1 atm: The olivine - clinopyroxene - plagioclase plane is a thermal divide in the haplo-basalt.
Mantle Xenoliths Chondritic Meteorite + Iron Metal Iron basalt or granite crust peridotite mantle olivine feldspar = Sun.
8. Solute (1) / Solvent (2) Systems 12.7 SVNA
Mantle Melting Some slides from Mary Leech. Table A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü.
Chapter 17 Stability of minerals. Introduction Kinetics (the rate of reactions): Kinetics (the rate of reactions): –Reaction rates slow down on cooling.
And now, THERMODYNAMICS!. Thermodynamics need not be so hard if you think of it as heat and chemical “flow” between “phases”.
Three Types of Rock: Igneous, Sedimentary, Metamorphic Rock: A solid, cohesive aggregate of grains of one or more MINERAL. Mineral: A naturally occurring,
Exsolution and Phase Diagrams Lecture 11. Alkali Feldspar Exsolution ‘Microcline’ - an alkali feldspar in which Na- and K-rich bands have formed perpendicular.
Chapter 2 Minerals Section 1 & 2 Matter and Minerals Notes 2-1.
Chemical Thermodynamics Chapter 19 Chemical Thermodynamics 19.1 Spontaneous Processes 19.2 Entropy and the Second Law of Thermodynamics 19.3 The Molecular.
Potential Temperature
Thermodynamic Models of Magmas
Chemographic Analysis
Solution of Thermodynamics: Theory and applications
Solutions and Thermobarometry
Geol 2312 Igneous and Metamorphic Petrology
Minerals & Their Families
Geothermobarametry Gibbs-Duhem equation describes how T and P changes affect free energy (as chemical potential) Reaction with big DSR change a good barometer,
Class 8. Mantle Melting and Phase Diagrams William Wilcock
Chemical Formulas Subscripts represent relative numbers of elements present (Parentheses) separate complexes or substituted elements Fe(OH)3 – Fe bonded.
Eutectic and Peritectic Systems
Geology 2217 Lab. 1. Recalculation of chemical analyses.
Phase Diagram.
Stoichiometry Some minerals contain varying amounts of 2+ elements which substitute for each other Solid solution – elements substitute in the mineral.
Estimating TP – models and pit-falls
Presentation transcript:

Thermobarometry Lecture 12

We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral assemblages (i.e., rocks) equilibrated within the Earth.

Some theoretical considerations We have seen that which phase assemblage is stable and the composition of those phases depends on ∆G r, which we use to calculate K o We also know ∆G r depends on T and P. Reactions that make good geothermometers are those that depend strongly on T. o What would characterize a good geothermometer? Similarly, a good geobarometer would be one strongly depending on P A good geothermometer will have large ∆H; a good geobarometer will have large ∆V.

Univariant Reactions Univariant (or invariant) reactions provide possible thermobarometers. There are 3 phases in the Al 2 Si 2 O 5 system. o When two coexist, we need only specify either T or P, the other is then fixed. o All three can coexist at just one T and P. o First is rare, second is rarer.

Garnet Peridotite Geobarometry Original approach of Wood and Banno generally assumed ideal solution Garnet becomes the high pressure aluminous phase in the mantle, replacing spinel. Aluminum also dissolves in the orthopyroxene (also clinopyroxene) We can write the reaction as: Mg 2 Si 2 O 6 +MgAl 2 SiO 6 = Mg 3 Al 2 Si 3 O 12 l.h.s. is the opx solid solution - Al end member does not exist as pure phase. Significant volume change associated with this reaction (but also depends on T). Other complexities arise from Ca, Fe, and Cr in phases.

Garnet Peridotite Geobarometry Subsequent refinements used asymmetric solution model to match experimental data. Recognize two distinct sites in opx crystal: o Smaller M1: Al substitutes here o Larger M2: Ca substitutes here P given by where C 3 is constant and other parameters depend on K, T, and composition.

Solvus Equilibria Another kind of thermobarometer is based on exsolution of two phases from a homogenous single phase solution. This occurs when the excess free energy exceeds the ideal solution term and inflections develop, as in the alkali feldspar system. Because it is strongly temperature dependent and not particularly pressure dependent, this makes a good geothermometer.

Temperature in Peridotites Temperatures calculated from compositions of co-existing orthopyroxene (enstatite) and clinopyroxene (diopside) solid solutions, which depend on T. Ca 2+ 

Exchange Reactions There are a number of common minerals where one or more ions substitutes for others in a solid solution. o The Fe 2+ –Mg 2+ substitution is common in ferromagnesian minerals. Let’s consider the exchange of Mg and Fe between olivine and a melt containing Mg and Fe. o This partitioning of these two ions between melt and olivine depends on temperature. o We can use a electron microprobe to measure the composition of olivine and co-existing melt (preserved as glass).

Olvine-Melt Geothermometer Reaction of interest can be written as: MgO ol + FeO l = MgO l + FeO ol o (note, this does not involve redox, so we write it in terms of oxides since these are conventionally reported in analyses. We could write it in terms of ions, however.) Assuming both solid and liquid solutions are ideal, the equilibrium constant for this reaction is: Unfortunately ∆H for the reaction above is small, so it has weak temperature dependence.

Roeder & Emslie Geothermometer Roeder & Emslie (1970) decided to consider two separate reactions: MgO liq –> MgO Ol and FeO liq –> FeO Ol Based on empirical data, they deduced the temperature dependence as: and See Example 4.3 for how to do the calculation - biggest effort is simply converting wt. percent to mole fraction.

Buddington and Lindsley Oxide Geothermometer Recall this diagram from Chapter 3 Things get interesting in real systems containing Ti, because both magnetite and hematite are solid solutions. Partition of Fe and Ti between the two depends on T and ƒ O2.

The reaction of interest is: yFe 2 TiO 4 + (1-y)Fe 3 O 4 + ¼O 2 = yFeTiO 3 + ( 3 / 2 -y)Fe 2 O 3 magnetite s.s. hematite s.s. The equilibrium constant for this reaction is The reaction can be thought of as a combination of an exchange reaction: Fe 3 O 4 + FeTiO 3 = Fe 3 TiO 4 + Fe 2 O 3 magnetite + illmenite = ulvospinel + hematite plus the oxidation of magnetite to hematite: 4Fe 3 O 4 + O 2 = 6Fe 2 O 3 Buddington and Lindsley Oxide Geothermometer

Computing Temperature and Oxygen Fugacity The calculation is complex because the system cannot be treated as ideal (except titanomagnetite above 800˚C). Equilibrium constant is: and Must calculate λ’s using asymmetric solution model (using interaction parameters), then solve for T and ƒ O2. Example 4.4 shows how.