Communication Networks (0368-3030) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner.

Slides:



Advertisements
Similar presentations
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
Advertisements

5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
1 Improving Web Servers performance Objectives:  Scalable Web server System  Locally distributed architectures  Cluster-based Web systems  Distributed.
Review r Multicast Routing m Three options m source-based tree: one tree per source shortest path trees reverse path forwarding m group-shared tree: group.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Lecture 16 Random Access protocols r A node transmits at random at full channel data rate R. r If two or more nodes “collide”, they retransmit at random.
Network Redundancy Multiple paths may exist between systems. Redundancy is not a requirement of a packet switching network. Redundancy was part of the.
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
Network LayerII-1 RSC Part II: Network Layer 4. IP in operation Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
1 Mao W07 Multiple Access EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement:
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
1 John Magee 11 July 2013 CS 101 Lecture 11: How do you “visit” a web page, revisted Slides adapted from Kurose and Ross, Computer Networking 5/e Source.
CMPT 471 Networking II Address Resolution IPv4 ARP RARP 1© Janice Regan, 2012.
Chapter 5 Link Layer Link Layer5-1 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter5_2.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer LANs.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
Multiple Access Links and Protocols
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
CS470 Computer Networking Protocols Huiping Guo Department of Computer Science California State University, Los Angeles 4. Internetworking.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
Net5: ARP 協定 授課教師:雲林科技大學 張慶龍 老師. IP Address/Physical Address Static Mapping  IP broadcast address maps to Ethernet broadcast address  IP Multicast Address.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:
CSEN 404 Data Link Layer Amr El Mougy Lamia AlBadrawy.
4: DataLink Layer1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
CPSC 441: Link Layer1 Link Layer Addressing Slides originally from Carey Williamson Notes derived from “ Computer Networking: A Top Down Approach”, by.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction to Networks
Behrouz A. Forouzan TCP/IP Protocol Suite, 3rd Ed.
Link Layer: Introduction
Introduction to Communication Networks – 67594
Address Resolution Protocol (ARP)
Some slides have been adapted from:
EEC-484/584 Computer Networks
CS4470 Computer Networking Protocols
MAC Addresses and ARP 32-bit IP address:
CS 5565 Network Architecture and Protocols
CSci4211: Data Link Layer: Part 1
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer.
University of Pittsburgh
ARP: Address Resolution Protocol
Session 16 INST 346 Technologies, Infrastructure and Architecture
CMPE 252A : Computer Networks
Mac Addressing, Ethernet, and Interconnections
IP Forwarding Relates to Lab 3.
Address Resolution Protocol (ARP)
CS 457 – Lecture 10 Internetworking and IP
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction to Networks
ECE 4450:427/527 - Computer Networks Spring 2017
Some slides have been taken from:
IP Forwarding Relates to Lab 3.
Chapters 1~5 Overview Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley Prof. Hong Liu for ECE369 Adapted from.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer.
Link Layer 5.1 Introduction and services
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer.
CMPE 252A : Computer Networks
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Chapter 5: Link Layer 5.1 Introduction and services
Presentation transcript:

Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner

Kurose & Ross, Chapter 5 (6 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (6 th ed.) Addison-Wesley, Marc Copyright , J.F Kurose and K.W. Ross, All Rights Reserved.

Link Layer5-3 MAC addresses and ARP  32-bit IP address:  network-layer address for interface  used for layer 3 (network layer) forwarding  MAC (or LAN or physical or Ethernet) address:  function: used ‘locally” to get frame from one interface to another physically-connected interface (same network, in IP- addressing sense)  48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable  e.g.: 1A-2F-BB AD hexadecimal (base 16) notation (each “number” represents 4 bits)

Link Layer5-4 LAN addresses and ARP each adapter on LAN has unique LAN address adapter 1A-2F-BB AD D7-FA-20-B0 0C-C4-11-6F-E F7-2B LAN (wired or wireless)

Link Layer5-5 LAN addresses (more)  MAC address allocation administered by IEEE  manufacturer buys portion of MAC address space (to assure uniqueness)  analogy:  MAC address: like Social Security Number  IP address: like postal address  MAC flat address ➜ portability  can move LAN card from one LAN to another  IP hierarchical address not portable  address depends on IP subnet to which node is attached

Link Layer5-6 ARP: address resolution protocol ARP table: each IP node (host, router) on LAN has table  IP/MAC address mappings for some LAN nodes:  TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine interface’s MAC address, knowing its IP address? 1A-2F-BB AD D7-FA-20-B0 0C-C4-11-6F-E F7-2B LAN

Link Layer5-7 ARP protocol: same LAN  A wants to send datagram to B  B’s MAC address not in A’s ARP table.  A broadcasts ARP query packet, containing B's IP address  dest MAC address = FF-FF- FF-FF-FF-FF  all nodes on LAN receive ARP query  B receives ARP packet, replies to A with its (B's) MAC address  frame sent to A’s MAC address (unicast)  A caches (saves) IP-to- MAC address pair in its ARP table until information becomes old (times out)  soft state: information that times out (goes away) unless refreshed  ARP is “plug-and-play”:  nodes create their ARP tables without intervention from net administrator

Link Layer5-8 walkthrough: send datagram from A to B via R  focus on addressing – at IP (datagram) and MAC layer (frame)  assume A knows B’s IP address  assume A knows IP address of first hop router, R (how?)  assume A knows R’s MAC address (how?) Addressing: routing to another LAN R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-9 Addressing: routing to another LAN IP Eth Phy IP src: IP dest:  A creates IP datagram with IP source A, destination B  A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram MAC src: C-E8-FF-55 MAC dest: E6-E BB-4B

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-10 Addressing: routing to another LAN IP Eth Phy  frame sent from A to R IP Eth Phy  frame received at R, datagram removed, passed up to IP MAC src: C-E8-FF-55 MAC dest: E6-E BB-4B IP src: IP dest: IP src: IP dest:

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-11 Addressing: routing to another LAN IP src: IP dest:  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy IP Eth Phy

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-12 Addressing: routing to another LAN  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram IP src: IP dest: MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy IP Eth Phy

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-13 Addressing: routing to another LAN  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram IP src: IP dest: MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy