June 9th, 2013 AB SCIEX – Beckman Coulter Partner workshop – ASMS Complete sequence coverage in one injection followed by posttranslational modifications.

Slides:



Advertisements
Similar presentations
Genomes and Proteomes genome: complete set of genetic information in organism gene sequence contains recipe for making proteins (genotype) proteome: complete.
Advertisements

Cruces-Blanco, C., Gamiz-Gracia, L., Garcia-Campana A.M., Applications of Capillary Electrophoresis in Forensic Analytical Chemistry Trends in Analytical.
Protein Quantitation II: Multiple Reaction Monitoring
From Genome to Proteome Juang RH (2004) BCbasics Systems Biology, Integrated Biology.
The Proteomics Core at Wayne State University
Proteomics Informatics – Protein characterization I: post-translational modifications (Week 10)
Micromass Quattro Ultima triple quadrupole mass spectrometric detector HPLC system (LC) Electrospray ionisation source (-ve & +ve ion) Photodiode array.
Screening of Cocaine and Its Metabolites in Urine December 9,2009 Ho Yan Yip Chem
UC Mass Spectrometry Facility & Protein Characterization for Proteomics Core Proteomics Capabilities: Examples of Protein ID and Analysis of Modified Proteins.
In-depth Analysis of Protein Amino Acid Sequence and PTMs with High-resolution Mass Spectrometry Lian Yang 2 ; Baozhen Shan 1 ; Bin Ma 2 1 Bioinformatics.
Proteomics The proteome is larger than the genome due to alternative splicing and protein modification. As we have said before we need to know All protein-protein.
Ch. 30 Capillary Electrophoresis, Capillary Electrochromatography
20-30% of a trypsinised proteome are constituted of peptides with Mw≥3000 (TReP) Identification of large peptides by shotgun MS is not efficient Isolation.
Proteomics Informatics – Protein identification II: search engines and protein sequence databases (Week 5)
Previous Lecture: Regression and Correlation
HOW MASS SPECTROMETRY CAN IMPROVE YOUR RESEARCH
FIGURE 5. Plot of peptide charge state ratios. Quality Control Concept Figure 6 shows a concept for the implementation of quality control as system suitability.
Proteomics Informatics (BMSC-GA 4437) Course Director David Fenyö Contact information
My contact details and information about submitting samples for MS
Proteomics Josh Leung Biology 1220 April 13 th, 2010.
Proteomics Informatics (BMSC-GA 4437) Course Director David Fenyö Contact information
Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS Gygi et al (2003) PNAS 100(12), presented by Jessica.
Tryptic digestion Proteomics Workflow for Gel-based and LC-coupled Mass Spectrometry Protein or peptide pre-fractionation is a prerequisite for the reduction.
Comparison of chicken light and dark meat using LC MALDI-TOF mass spectrometry as a model system for biomarker discovery WP 651 Jie Du; Stephen J. Hattan.
Advanced Electrophoresis Solutions Ltd
Circulating Fragments of N- Terminal Pro B-Type Natriuretic Peptide in Plasma of Heart Failure Patients J.Y.Y. Foo, Y. Wan, B.L. Schulz, K. Kostner, J.
Production of polypeptides, Da, and middle-down analysis by LC-MSMS Catherine Fenselau 1, Joseph Cannon 1, Nathan Edwards 2, Karen Lohnes 1,
Chapter 9 Mass Spectrometry (MS) -Microbial Functional Genomics 조광평 CBBL.
The dynamic nature of the proteome
An introduction and possible applications Ariane Kahnt
Protein and Peptide Sequencing by FTMS Susan Martin.
Nanofluidic Microsystems for Advanced Biosample Preparation Ying-Chih Wang 1, Jianping Fu, Yong-Ak Song and Jongyoon Han 2,3 1 Department.
ETD & ETD/PTR Electron Transfer Dissociation Proton Transfer Reaction
A new "Molecular Scanner" design for interfacing gel electrophoresis with MALDI-TOF ThP Stephen J. Hattan; Kenneth C. Parker; Marvin L. Vestal SimulTof.
Gentle ionization mass spectrometry as universal research tool in life science.
In-Gel Digestion Why In-Gel Digest?
Created with MindGenius Business 2005® Capillary Electrophoresis Capillary Electrophoresis Advantages Only needs nL sample High speed and resolution, virtually.
Overview of Mass Spectrometry
EBI is an Outstation of the European Molecular Biology Laboratory. In silico analysis of accurate proteomics, complemented by selective isolation of peptides.
1 I. Introduction 1.Definition: Protein Characterization/Proteomics i.Classical Proteomics ii.Functional Proteomics 2.Mass spectrometery I.Advantages in.
Proteomics Informatics (BMSC-GA 4437) Instructor David Fenyö Contact information
Salamanca, March 16th 2010 Participants: Laboratori de Proteomica-HUVH Servicio de Proteómica-CNB-CSIC Participants: Laboratori de Proteomica-HUVH Servicio.
Selling Restek LC Solutions for Analytical Scale Laboratories Rick Lake Product Line Manager Liquid Chromatography x 2379
Proteomics Informatics (BMSC-GA 4437) Course Directors David Fenyö Kelly Ruggles Beatrix Ueberheide Contact information
Constructing high resolution consensus spectra for a peptide library
Bioananalytical separation group Max Mousseron Institute, Montpellier, France Proteolysis inside a coated capillary : new development for the Quality Control.
김지형. Introduction precursor peptides are dynamically selected for fragmentation with exclusion to prevent repetitive acquisition of MS/MS spectra.
Finding the unexpected in SWATH™ Data Sets – Implications for Protein Quantification Ron Bonner; Stephen Tate; Adam Lau AB SCIEX, 71 Four Valley Drive,
Peptide de novo sequencing Peptide de novo sequencing is the analytical process that derives a peptide’s amino acid sequence from its tandem mass spectrum.
National High Magnetic Field Laboratory- ICR Group
LC-MS/MS Identification of Impurities Present in Synthetic Peptide Drugs Dr Anna Meljon*, Dr Alan Thompson, Dr Osama Chahrour, and Dr John Malone Almac.
in an Agilent Ion Trap Mass Spectrometery
2 Dimensional Gel Electrophoresis
Authors: Aruna Jyothi. M, Sanovar Bhargava, Hima Bindu. A, Subbarayudu
EuPA 2013 Scientific meeting, St Malo, France, october 2013
Lecture 2 Techniques in proteomics By Ms. Shumaila Azam
Thomas BOTZANOWSKI & Blandine CHAZARIN
MCB test 2 Review M. Alex Miranda 11/5/16.
Bioinformatics Solutions Inc.
Proteomics Informatics David Fenyő
A perspective on proteomics in cell biology
Proteomics Informatics –
Complementary Structural Mass Spectrometry Techniques Reveal Local Dynamics in Functionally Important Regions of a Metastable Serpin  Xiaojing Zheng,
A, Averaged full MS (ions converted to monoisotopic MW by Xcalibur Xtract) of Segment I-3 (see supplemental Fig. A, Averaged full MS (ions converted to.
2D-LC-MS/MS analysis of tryptic digest of HEK293-SUMO3 cells (2 μg inj
Mass Spectrometry THE MAIN USE OF MS IN ORG CHEM IS:
Shotgun Proteomics in Neuroscience
Proteomics Informatics David Fenyő
Salivary Lactoferrin Is Recognized by the Human Herpesvirus-8
New Dual Electrode µ-PrepCell™ for Efficient Reduction of Disulfide Bonds in Proteins/Peptides ASMS 2018 San Diego, CA, USA.
Presentation transcript:

June 9th, 2013 AB SCIEX – Beckman Coulter Partner workshop – ASMS Complete sequence coverage in one injection followed by posttranslational modifications and major N-glycosylation characterization of monoclonal antibodies by sheathless CESI-MS/MS R. Gahoual 1, J-M. Busnel 2, J. Chicher 3, L. Kuhn 3, P. Hammann 3, A. Beck 4, Y.N. François 1, E. Leize-Wagner 1 1 Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg (CNRS-UDS UMR 7140) 2 Beckman Coulter, Brea (CA, USA) 3 IEsplanade Proteomic Facility, IBMC, University of Strasbourg (CNRS-UDS-UPR 9002) 4 Centre d’immunologie Pierre Fabre (CIPF) EUPA – Saint-Malo October 17 th, 2013

2 Separation in capillary electrophoresis electrophoretic mobility electroosmotic mobility Analytes are separated depending on their charge and size CE provides fast separation great efficiency low sample consumption

3 Web of science SM search using term “capillary electrophoresis and mass spectrometry” Number of publications CE–MS Coupling

4 CE-ESI-MS Coupling Advantages of CE-MS Great efficiency Selectivity Sensitivity Structural information Drawbacks of CE-MS Low sample volume (high concentration) Compatibility of background electrolyte to MS Difficulty to maintain electrical field Ultra-low flow rate

5 “sheath liquid” interface is the most common Addressing CE-MS Limitations Over 30 publications describing new interfaces 3 different categories (sheath liquid, junction liquid, sheathless)

6 CE is a miniaturized technique performing ultra-low flow rates Decreasing the flow allows for increased sensitivity in the ESI-MS 1 “Sheathless” CE-ESI-MS 1 Wilm, Mann International Journal of Mass Spectrometry 1994, 136, 167–180 Addressing CE-MS Limitations

7 CESI Interface 30 µm ID separation capillary with outlet portion etched by HF, provides electrical contact Originally developed by M. Moini at U. of Texas and further developed by Beckman Coulter Inc.

8 CESI Interface No sheath liquid is necessary anymore to perform CE-ESI-MS nano flow rates and increased sensitivity

What are the accessible flow rates? 9

10 CESI Interface Achievable Flow rates CESI-MS infusion of intact protein sample Spray could be obtained using flow rate as low as 4 nL/min Conditions : Myoglobin 1 μM (in 10% acetic acid), Flow rates 3, nL/min, Capillary voltage: -1400V, Investigated m/z : 848,94 Gahoual et al, Analytical and Bioanalytical Chemistry 2013, online available

Conditions : Flowrate nL/min Capillary voltage : V, Investigated m/z : 2196 Infusion of Myoglobin 250nM (in 20mM AceNH 4 pH 6,7) Influence of the flow rate on sensitivity 46 fold increase in sensitivity by decreasing the Flow rate from 350 to 10 nL/min Gahoual et al, Analytical and Bioanalytical Chemistry 2013, online available

1.Introduction 2.Rapid and multi-level characterization of monoclonal antibody through CESI-MS workflow 12 Content

13 Monoclonal Antibodies (mAbs) Highly specific to the targeted antigen Opening new pathways for treatments Over 40 mAbs currently approved by FDA (15 in oncology) Complex and heterogeneous protein  necessity of precise and high throughput characterization  challenge to analytical sciences

14 Trastuzumab (Herceptin) Average mass: 148,057 Da (1,328 a.a.) IgG1 A. Beck et al., Anal. Chem. 2012, 84, N 300Glc STY-

15 Bottom-up Approach Peptide separation and detection by NanoLC-MS/MS  Eksigent nanoLC™ 2D plus system with cHiPLC® System  AB SCIEX TripleTOF® 5600 System Peptide identification using search algorithm  Mascot algorithm Protein enzymatic digestion  Tryptic digestion (conventional in solution protocol)

16 Trastuzumab peptide mapping using nanoLC-MS/MS 74.6 %95.4 % EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPG DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAWYQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC Necessity to perform a different proteolytic digestion and to compile different injections to obtain full sequence coverage mAb sequence coverage

CESI Workflow 17

18 A. Beck et al., Anal. Chem. 2012, 84, Average mass: 148,057 Da (1,328 a.a.) Trastuzumab (Herceptin) LC : -N 30 T – (D/isoD, +1 Da) HC : -N 55 T – (D/isoD, +1 Da) HC : -N 387 T – (D/isoD, +1 Da)

19 Bottom-up Approach Peptide separation and detection by CESI-MS/MS  AB SCIEX TripleTOF 5600 System Sequence characterization by MS/MS peptide mapping Research of glycosylation and posttranslational modifications Protein enzymatic digestion  Same Sample of trastruzumab (same protocol)

20 Trastuzumab MS/MS peptide mapping Amino acid sequence characterization (trastuzumab) EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPG DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAWYQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC 100% sequence coverage could be achieved in 1 injection through only purely tryptic unmodified peptides

21 mAb MS/MS Peptide Mapping MS/MS spectrum of digested peptides HT33 LTVDK ( ; 2+) MS/MS spectrum of digested peptides HT21 DYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTQTYIC NVNHKPSNTKVDKK ( ; 6+) CE allows separation and detection of a wide variety of peptides

22 Variable domain retraced on 98/120 AAs for the HC Variable domain retraced on 99/107 AAs for the LC MS/MS spectra obtained through the CESI interface allowed characterization of almost the entire variable domain mAb MS/MS Peptide Mapping

23 A. Beck et al., Anal. Chem. 2012, 84, Average mass: 148,057 Da (1,328 a.a.) Trastuzumab (Herceptin) LC : -N 30 T – (D/isoD, +1 Da) HC : -N 55 T – (D/isoD, +1 Da) HC : -N 387 T – (D/isoD, +1 Da)

24 PTMs Hot-spot Characterization 6 PTMs hot spots characterized on the same CESI-MS/MS analysis Hot-spots detected by CESI-MS/MS :  HC E 1 cyclization  HC N 55 and N 387 deamidation  HC M 255 and M 431 oxidation  LC N 30 deamidation Peptides detected intact and modified N* N

25 E 1 /pE 1 Characterization EVQLVESGGGLVQPGGSLR y(16) y(15) y(13) y(14) y(11) b(3) b(4) b(2) 100% 50% 0% E*VQLVESGGGLVQPGGSLR b(4) y(6) y(8) y(12) y(13) y(14) y(16) y(17) y(15) y(11) y(7) y(1) 100% 50% 0%

26 N 55 Deamidation Characterization IYPTNGYTR N b(8) y(8) y(7) y(6) y(5) y(4) y(3) y(2) y(1) b(7) b(3) b(2) 100% 50% 0% IYPTN*GYTR N* y(8) y(7) y(6) y(5) y(4) y(3) y(2) y(1) b(3) b(2) 100% 50% 0%

27 M 431 Oxydation Characterization WQQGNVFSCSVM*HEALHNHYTQK y(16) M* y(12) y(5) y(4) y(3) y(6) y(7) y(11) 100% 50% 0% WQQGNVFSCSVMHEALHNHYTQK y(23) y(17) y(18) y(16) y(14) y(15) y(13) y(12) y(11) y(9) y(7) M 100% 50% 0%

28 Trastuzumab glycosylation characterization Structural characterization 2+ HT24 Relative abundance 47.5% MS/MS spectrum of HT24 – G0F ( , 2+) 2+ Relative abundance 0.71% HT24 MS/MS spectrum of HT24 – H5N4F1 ( , 2+) CESI-MS/MS method in data dependent analysis acquisition allowed to detect 13 different glycosylations including fragmentation spectra for 9 of them in a single analysis Trastuzumab

29 Glycosylation profiling Glycosylation distribution Trastuzumab

30 Glycosylation profiling Glycosylation distribution Trastuzumab Possibility to detect very low abundant glycosylation

31 Glycosylation profiling Glycosylation distribution Trastuzumab Possibility to detect very low abundant glycosylation Potential syalylated form detected (confirmation)

32 Trastu biosimilar MS/MS peptide mapping EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPG DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAWYQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC Amino acid sequence characterization (Hz5D4) Each peptide is correctly identified except K 217 on the HC Again complete sequence coverage obtained through tryptic unmodified peptides identification

33 Trastu biosimilar amino acid substitution characterization R KDV VDK R K V R V E y b Trastu biosimilar MS/MS peptide mapping MS/MS spectrum of ion (1+)MS/MS spectrum of ion (2+) MS/MS spectra allowed to determine unambiguously Trastu biosimilar amino acid substitution compared to trastuzumab V D K R 217 V E P K

34 mAb Characterization-Conclusion Single analysis of trastuzumab tryptic digest by CESI-MS/MS  Complete sequence coverage on both HC and LC  Characterization of 6 PTMs hot-spots  Structural characterization of 5 major N-glycosylations 100 fmol digested peptides injected Use of CE separation mechanism for mAb characterization  Possibility characterize modified and unmodified peptides  In some cases, separation of modified peptide (PTMs) This methodology is applicable to various mAbs

Acknowledgments Emmanuelle Leize-Wagner Rabah Gahoual Michael Biacchi Philippe Hammann Philippe Wolf Lauriane Kuhn Johanna Chicher Esplanade Proteomic Facility (Strasbourg) Laboratory of Mass Spectrometry of Interactions and System (LSMIS)

Jean-Marc Busnel Hans Dewald Jeff Chapman Edna Betgovargez Michel Anselme Centre d’Immunologie Pierre Fabre Alain Beck Elsa Wagner-Rousset Marie-Claire Janin-Bussat Daniel Ayoub Olivier Colas Acknowledgments Gary Impey Jean-Batiste Vincendet Sujet de thèse déposée à l’EDSC Strasbourg