1 MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks Gang Zhou, Chengdu Huang, Ting Yan, Tian He John. A. Stankovic, Tarek F. Abdelzaher.

Slides:



Advertisements
Similar presentations
Hidden Terminal Problem and Exposed Terminal Problem in Wireless MAC Protocols.
Advertisements

A 2 -MAC: An Adaptive, Anycast MAC Protocol for Wireless Sensor Networks Hwee-Xian TAN and Mun Choon CHAN Department of Computer Science, School of Computing.
Min Song 1, Yanxiao Zhao 1, Jun Wang 1, E. K. Park 2 1 Old Dominion University, USA 2 University of Missouri at Kansas City, USA IEEE ICC 2009 A High Throughput.
SELF-ORGANIZING MEDIA ACCESS MECHANISM OF A WIRELESS SENSOR NETWORK AHM QUAMRUZZAMAN.
TDMA Scheduling in Wireless Sensor Networks
Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver Nov 2011 Neng Xue Tianxu Wang.
A Mobile Infrastructure Based VANET Routing Protocol in the Urban Environment School of Electronics Engineering and Computer Science, PKU, Beijing, China.
An Analysis of the Optimum Node Density for Ad hoc Mobile Networks Elizabeth M. Royer, P. Michael Melliar-Smith and Louise E. Moser Presented by Aki Happonen.
PEDS September 18, 2006 Power Efficient System for Sensor Networks1 S. Coleri, A. Puri and P. Varaiya UC Berkeley Eighth IEEE International Symposium on.
Random Access MAC for Efficient Broadcast Support in Ad Hoc Networks Ken Tang, Mario Gerla Computer Science Department University of California, Los Angeles.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
Impact of Radio Irregularity on Wireless Sensor Networks
IEEE INFOCOM 2005, Miami, FL RID: Radio Interference Detection in Wireless Sensor Networks Gang Zhou, Tian He, John A. Stankovic, Tarek F. Abdelzaher Computer.
Distributed Priority Scheduling and Medium Access in Ad Hoc Networks Distributed Priority Scheduling and Medium Access in Ad Hoc Networks Vikram Kanodia.
Self Organization and Energy Efficient TDMA MAC Protocol by Wake Up For Wireless Sensor Networks Zhihui Chen; Ashfaq Khokhar ECE/CS Dept., University of.
1 Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye Fabio Silva John Heidemann Presented by: Ronak Bhuta Date: 4 th December 2007.
A Transmission Control Scheme for Media Access in Sensor Networks Presented by Jianhua Shao.
University of Virginia1 TMMAC: An Energy Efficient Multi- Channel MAC Protocol for Ad Hoc Networks Jingbin Zhang †, Gang Zhou †, Chengdu Huang ‡, Sang.
1 Crowded Spectrum in Wireless Sensor Networks Gang Zhou, John A. Stankovic, Sang H. Son Department of Computer Science University of Virginia May, 2006.
A Transmission Control Scheme for Media Access in Sensor Networks Alec Woo, David Culler (University of California, Berkeley) Special thanks to Wei Ye.
TiZo-MAC The TIME-ZONE PROTOCOL for mobile wireless sensor networks by Antonio G. Ruzzelli Supervisor : Paul Havinga This work is performed as part of.
On the Energy Efficient Design of Wireless Sensor Networks Tariq M. Jadoon, PhD Department of Computer Science Lahore University of Management Sciences.
Versatile low power media access for wireless sensor networks Joseph PolastreJason HillDavid Culler Computer Science Department University of California,Berkeley.
IEEE Wireless Communication Magazine Design and Performance of an Enhanced IEEE MAC Protocol for Multihop Coverage Extension Frank H.P. Fitzek, Diego.
Efficient MAC Protocols for Wireless Sensor Networks
MAC Layer Protocols for Sensor Networks Leonardo Leiria Fernandes.
1 Algorithms for Bandwidth Efficient Multicast Routing in Multi-channel Multi-radio Wireless Mesh Networks Hoang Lan Nguyen and Uyen Trang Nguyen Presenter:
Yanyan Yang, Yunhuai Liu, and Lionel M. Ni Department of Computer Science and Engineering, Hong Kong University of Science and Technology IEEE MASS 2009.
Medium Access Control Protocols Using Directional Antennas in Ad Hoc Networks CIS 888 Prof. Anish Arora The Ohio State University.
Tuning the Carrier Sensing Range of IEEE MAC Jing Deng,Ben Liang and Pramod K. Varshney Univ. of New Orleans Globecom 2004.
Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver Jungmin So and Nitin Vaidya University of Illinois.
1 Adaptive QoS Framework for Wireless Sensor Networks Lucy He Honeywell Technology & Solutions Lab No. 430 Guo Li Bin Road, Pudong New Area, Shanghai,
Stochastic sleep scheduling (SSS) for large scale wireless sensor networks Yaxiong Zhao Jie Wu Computer and Information Sciences Temple University.
An Energy Efficient MAC Protocol for Wireless Sensor Networks “S-MAC” Wei Ye, John Heidemann, Deborah Estrin Presentation: Deniz Çokuslu May 2008.
Power Save Mechanisms for Multi-Hop Wireless Networks Matthew J. Miller and Nitin H. Vaidya University of Illinois at Urbana-Champaign BROADNETS October.
1 Core-PC: A Class of Correlative Power Control Algorithms for Single Channel Mobile Ad Hoc Networks Jun Zhang and Brahim Bensaou The Hong Kong University.
Improving Capacity and Flexibility of Wireless Mesh Networks by Interface Switching Yunxia Feng, Minglu Li and Min-You Wu Presented by: Yunxia Feng Dept.
MARCH : A Medium Access Control Protocol For Multihop Wireless Ad Hoc Networks 성 백 동
Effects of Multi-Rate in Ad Hoc Wireless Networks
Demand Based Bandwidth Assignment MAC Protocol for Wireless LANs K.Murugan, B.Dushyanth, E.Gunasekaran S.Arivuthokai, RS.Bhuvaneswaran, S.Shanmugavel.
Lan F.Akyildiz,Weilian Su, Erdal Cayirci,and Yogesh sankarasubramaniam IEEE Communications Magazine 2002 Speaker:earl A Survey on Sensor Networks.
Multi-Channel MAC for Ad Hoc Networks: Handling Multi- Channel Hidden Terminals Using a Single Transceiver (MMAC) Paper by Jungmin So and Nitin Vaidya.
A Reservation-based TDMA Protocol Using Directional Antennas (RTDMA-DA) For Wireless Mesh Networks Amitabha Das and Tingliang Zhu, Nanyang Technological.
A SURVEY OF MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS
An Adaptive Energy-Efficient and Low- Latency MAC for Data Gathering in Wireless Sensor Networks Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra.
Self Organization and Energy Efficient TDMA MAC Protocol by Wake Up for Wireless Sensor Networks Zhihui Chen and Ashfaq Khokhar ECE Department, University.
Opportunistic Flooding in Low-Duty- Cycle Wireless Sensor Networks with Unreliable Links Shuo Goo, Yu Gu, Bo Jiang and Tian He University of Minnesota,
A Multi-Channel CSMA MAC Protocol with Receiver Based Channel Selection for Multihop Wireless Networks Nitin Jain, Samir R. Das Department of Electrical.
A+MAC: A Streamlined Variable Duty-Cycle MAC Protocol for Wireless Sensor Networks 1 Sang Hoon Lee, 2 Byung Joon Park and 1 Lynn Choi 1 School of Electrical.
KAIS T Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Network Wei Ye, John Heidemann, Deborah Estrin 2003 IEEE/ACM TRANSACTIONS.
A Multi-Channel Cooperative MIMO MAC Protocol for Wireless Sensor Networks(MCCMIMO) MASS 2010.
Explicit and Implicit Pipelining in Wireless MAC Nitin Vaidya University of Illinois at Urbana-Champaign Joint work with Xue Yang, UIUC.
Evaluation of ad hoc routing over a channel switching MAC protocol Ethan Phelps-Goodman Lillie Kittredge.
ECE 256, Spring 2009 __________ Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver __________________.
Jingbin Zhang( 張靜斌 ) †, Gang Zhou †, Chengdu Huang ‡, Sang H. Son †, John A. Stankovic † TMMAC: An Energy Efficient Multi- Channel MAC Protocol for Ad.
RM-MAC: A Routing-Enhanced Multi-Channel MAC Protocol in Duty-Cycle Sensor Networks Ye Liu, Hao Liu, Qing Yang, and Shaoen Wu In Proceedings of the IEEE.
A Cluster Based On-demand Multi- Channel MAC Protocol for Wireless Multimedia Sensor Network Cheng Li1, Pu Wang1, Hsiao-Hwa Chen2, and Mohsen Guizani3.
GholamHossein Ekbatanifard, Reza Monsefi, Mohammad H. Yaghmaee M., Seyed Amin Hosseini S. ELSEVIER Computer Networks 2012 Queen-MAC: A quorum-based energy-efficient.
MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks Cheoleun Moon Computer Science Div. at KAIST.
SERENA: SchEduling RoutEr Nodes Activity in wireless ad hoc and sensor networks Pascale Minet and Saoucene Mahfoudh INRIA, Rocquencourt Le Chesnay.
A Bit-Map-Assisted Energy- Efficient MAC Scheme for Wireless Sensor Networks Jing Li and Georgios Y. Lazarou Department of Electrical and Computer Engineering,
Mobile Networks and Applications (January 2007) Presented by J.H. Su ( 蘇至浩 ) 2016/3/21 OPLab, IM, NTU 1 Joint Design of Routing and Medium Access Control.
LA-MAC: A Load Adaptive MAC Protocol for MANETs IEEE Global Telecommunications Conference(GLOBECOM )2009. Presented by Qiang YE Smart Grid Subgroup Meeting.
Z-MAC : a Hybrid MAC for Wireless Sensor Networks Injong Rhee, Ajit Warrier, Mahesh Aia and Jeongki Min ACM SenSys Systems Modeling.
12.Nov.2007 Capacity of Ad Hoc Wireless Networks Jinyang Li Charles Blake Douglas S. J. De Coutu Hu Imm Lee Robert Morris Paper presentation by Tonio Gsell.
Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver Jungmin So and Nitin Vaidya Modified and Presented.
Multi-channel, multi-radio wireless networks
High Throughput Route Selection in Multi-Rate Ad Hoc Wireless Networks
Presentation by Andrew Keating for CS577 Fall 2009
Pradeep Kyasanur Nitin H. Vaidya Presented by Chen, Chun-cheng
Presentation transcript:

1 MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks Gang Zhou, Chengdu Huang, Ting Yan, Tian He John. A. Stankovic, Tarek F. Abdelzaher Department of Computer Science University of Virginia

2 Outline Motivation State of the Art Overhead Analysis Contribution – New Protocol Framework Frequency Assignment Media Access Design Performance Evaluation Conclusions

University of Virginia 3 Ad Hoc Wireless Sensor Networks Sensors Actuators CPUs/Memory Radio Minimal capacity Self-organize

University of Virginia 4 Motivation Limited single-channel bandwidth in WSN 19.2kbps in MICA2, 250kbps in MICAz/Telos The bandwidth requirement is increasing Support audio/video streams (assisted living, …) Multi-channel design needed Hardware appearing Multi-channel support in MICAz/Telos More frequencies available in the future Collision-based: B-MAC Scheduling-based: TRAMA Hybrid: Z-MAC Software still lags behind

University of Virginia 5 State of the Art: Multi-Channel MAC in MANET  Require more powerful hardware/multiple transceivers Listen to multiple channels simultaneously [Nasipuri 1999], [Wu 2000], [Nasipuri 2000], [Caccaco 2002]  Frequent Use of RTS/CTS Controls For frequency negotiation Due to using Examples: [Jain 2001], [Tzamaloukas 2001], [Fitzek 2003], [Li 2003], [Bahl 2004], [So 2004], [Adya 2004], [Raniwala 2005]

University of Virginia 6 Basic Problems for WSN Don’t use multiple transceivers Cost Form factor Packet Size 30 bytes versus 512 bytes (or larger) in MANET RTS/CTS Costly overhead

University of Virginia 7 RTS/CTS Overhead Analysis MMAC: RTS/CTS frequency negotiation for data communication RTS/CTS are too heavyweight for WSN: Mainly due to small packet size: 30~50 bytes in WSN vs bytes in MANET From : RTS-CTS-DATA-ACK From frequency negotiation: case study with MMAC

University of Virginia 8 Contributions A new multi-frequency MAC, specially designed for WSN; Single half-duplex radio transceiver; Small packets sizes; Developed four frequency assignment schemes Supports various tradeoffs Toggle transmission and toggle snooping techniques for media access control; An optimal non-uniform backoff algorithm, and a lightweight approximation;

University of Virginia 9 Frequency Assignment F1 F2 F3 F4 F5 F6 F7 F8 Reception Frequency Complications Not enough frequencies Broadcast

University of Virginia 10 Frequency Assignment When #frequencies >= #nodes within two hops When #frequencies < #nodes within two hops Exclusive Frequency Assignment Implicit-ConsensusEven SelectionEavesdropping Both guarantee that nodes within two hops get different frequencies The left scheme needs smaller #frequencies The right one has less communication overhead Balance available frequencies within two hops The left scheme has fewer potential conflicts The right one has less communication overhead

University of Virginia 11 Media Access Design F1 F2 F3 F4 F5 F6 F7 F8 Issues: Packet to Broadcast Receive Broadcast Send Unicast Receive Unicast No sending/no receiving

University of Virginia 12 Media Access Design Different frequencies for unicast reception The same frequency for broadcast reception Time is divided into slots, each of which consists of a broadcast contention period and a transmission period. T b c T tran T b c T …...

University of Virginia 13 Media Access Design Case 1: When a node has no packet to transmit

University of Virginia 14 Media Access Design Case 2: When a node has a broadcast packet to transmit

University of Virginia 15 Media Access Design Case 3: When a node has a unicast packet to transmit

University of Virginia 16 Toggle Snooping During “ “, toggle snooping is used

University of Virginia 17 Toggle Transmission  When a node has unicast packet to send  Transmits a preamble  so that no node sends to me  so that no node sends to destination  We let

University of Virginia 18 Simulation Configuration ComponentsSetting SimulatorGloMoSim Terrain(200m X 200m) Square Node Number289 (17x17) Node PlacementUniform Payload Size32 Bytes ApplicationMany-to-Many/Gossip CBR Streams Routing LayerGF MAC LayerCSMA/MMSN Radio LayerRADIO-ACCNOISE Radio Bandwidth250Kbps Radio Range20m~45m Confidence IntervalsThe 90% confidence intervals are shown in each figure

University of Virginia 19 Performance with Different #Physical Frequencies - With Light Load ① Performance when delivery ratio > 93% ② Scalable performance improvement ③ Overhead observed when #frequency is small ④ More scalable performance with Gossip than many-to-many traffic

University of Virginia 20 Performance with Different #Physical Frequencies – With Higher Load ① When load is heavy, CSMA has 77% delivery ratio, while MMSN performs much better ② MMSN needs less channels to beat CSMA, when the load is heavier

University of Virginia 21 Performance with Different System Load Observation: CSMA has a sharp decrease of packet delivery ratio, while MMSN does not. Reason: The non-uniform backoff in time-slotted MMSN is tolerant to system load variation, while the uniform backoff in CSMA is not.

University of Virginia 22 Conclusions First multi-frequency MAC, specially designed for WSN, where single-transceiver devices are used Explore tradeoffs in frequency assignment Design toggle transmission and toggle snooping Theoretical analysis of an non-uniform back-off algorithm MMSN demonstrated scalable performance in simulation

University of Virginia 23 The End! Thanks to anonymous reviewers for their valuable comments!

University of Virginia 24 Performance with Different Node Densities

University of Virginia 25 Backup Slides: Optimal Non-Uniform Backoff

University of Virginia 26 Even Selection Frequency Assignment Beacon (multiple times) to collect nodes’ IDs within two hops Frequency decision is made sequentially in the increasing order of nodes’ IDs When making a decision, randomly choose one of the least chosen frequencies (once no unique ones left) Notify neighbors of decision NOTE: Frequency assignment happens once (or a few times)

University of Virginia 27 Back Off Period - Slotted Backoff into a slot Transmit at end of a slot

University of Virginia 28 Non-Uniform Backoff: Motivation & an Optimal Solution Uniform backoff Non-uniform backoff Let 34 slices of length T TS ; 68 nodes compete for the channel --- a timer fires An optimal distribution is presented in the paper Uses recursive computation Distribution depends on node density A simple approximation is needed

University of Virginia 29 Non-uniform Backoff: A Simple Approximation implementation