SIMPLEX METHOD FOR LP LP Model.

Slides:



Advertisements
Similar presentations
February 14, 2002 Putting Linear Programs into standard form
Advertisements

The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
Chapter 5: Linear Programming: The Simplex Method
Lecture 3 Linear Programming: Tutorial Simplex Method
Operation Research Chapter 3 Simplex Method.
L17 LP part3 Homework Review Multiple Solutions Degeneracy Unbounded problems Summary 1.
Assignment (6) Simplex Method for solving LP problems with two variables.
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Dr. Sana’a Wafa Al-Sayegh
L16 LP part2 Homework Review N design variables, m equations Summary 1.
LINEAR PROGRAMMING SIMPLEX METHOD
The Simplex Method: Standard Maximization Problems
The Simplex Algorithm An Algorithm for solving Linear Programming Problems.
Operation Research Chapter 3 Simplex Method.
1 5.6 No-Standard Formulations  What do you do if your problem formulation doeshave the Standard Form?  What do you do if your problem formulation does.
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 3 Linear Programming Methods 高等作業研究 高等作業研究 ( 一 ) Chapter 3 Linear Programming Methods (II)
1. The Simplex Method.
Simplex Linear Programming I. Concept II. Model Template III. Class Example IV. Procedure V. Interpretation MAXIMIZATION METHOD Applied Management Science.
Chapter 6 Linear Programming: The Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Simplex method (algebraic interpretation)
EE/Econ 458 The Simplex Method using the Tableau Method
Simplex Algorithm.Big M Method
This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to two  constraints.
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The Simplex Method Updated 15 February Main Steps of the Simplex Method 1.Put the problem in Row-Zero Form. 2.Construct the Simplex tableau. 3.Obtain.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
Mechanical Engineering Department 1 سورة النحل (78)
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
1 1 Slide © 2005 Thomson/South-Western Simplex-Based Sensitivity Analysis and Duality n Sensitivity Analysis with the Simplex Tableau n Duality.
1 Simplex Method (created by George Dantzig in late 1940s) A systematic way of searching for an optimal LP solution BMGT 434, Spring 2002 Instructor: Chien-Yu.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
Simplex method : Tableau Form
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Part 3. Linear Programming 3.2 Algorithm. General Formulation Convex function Convex region.
 LP graphical solution is always associated with a corner point of the solution space.  The transition from the geometric corner point solution to the.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
(iii) Simplex method - I D Nagesh Kumar, IISc Water Resources Planning and Management: M3L3 Linear Programming and Applications.
GOOD MORNING CLASS! In Operation Research Class, WE MEET AGAIN WITH A TOPIC OF :
Chapter 4 The Simplex Algorithm and Goal Programming
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
Linear Programming Dr. T. T. Kachwala.
Linear programming Simplex method.
Chapter 4 Linear Programming: The Simplex Method
The Simplex Method.
Chapter 3 The Simplex Method and Sensitivity Analysis
Part 3. Linear Programming
Linear Programming SIMPLEX METHOD.
Well, just how many basic
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
LINEAR PROGRAMMING Example 1 Maximise I = x + 0.8y
Simplex method (algebraic interpretation)
Presentation transcript:

SIMPLEX METHOD FOR LP LP Model

Preview of the Simplex Method Developed by G B Dantzig in 1947. Similar to graphical method. The optimal solution lies at an extreme corner point of the multi-dimensional figure. Simplex method examines the extreme points in a systematic manner, till we reach optimal solution. Hence iterative in nature. SIMPLEX METHOD

Gauss Jordan Elimination Method A LP in standard form has both decision variables and slack variables. Both are admissible variables. If there are m constarint equations and n admissible variables then if m = n then a unique solution exists. if m > n then m-n equations have to be linearly dependent. if m < n then optimization is required. SIMPLEX METHOD

Standard LP Model The Standard LP Model shall have following characteristics: All the constraints should be expressed as equations by adding slack or surplus and or artificial variables. The right hand side of each constraint should be made non-negative, if is not, then this should be made by multiplying both sides by –1. The objective function may be maximisation type or minimisation type. An LP is in “canonical form” if it is written so that it is in standard form, and such that each constraint has a variable with a coefficient “1” and such that that variable has a 0 in all other constraints. SIMPLEX METHOD

SIMPLEX METHOD

Major Issues of the Simplex Algorithm SIMPLEX METHOD ISSUES Major Issues of the Simplex Algorithm How does one get the LP into the correct starting form? How does one recognize optimality and unboundedness? How does one move to the next corner point solution SIMPLEX METHOD

Slack Variables Slack Variable – For constraints of type , the RHS normally represents the limit on the availability of a resource, and the LHS represents the usage of this resource by different activities. Slack represents amount of resource exceeding its usage 6x1 + 4 x2  24 is converted to following by adding slack. 6x1 + 4 x2 + s1 = 24 SIMPLEX METHOD

Surplus Variables Constraints of  type normally set minimum specification requirements. In this case the surplus represents the excess of the LHS over the minimum requirement. For example x1 + x2  800 is mathematically equivalent to x1 + x2 –S1 = 800 SIMPLEX METHOD

Unrestricted Variables In some cases of LP the variables may assume any real value. An unrestricted variable can then be expressed in terms of two non-negative variables by using the substitution x j = x j+ - x j- where x j+, x j- are non negative. SIMPLEX METHOD

Example Express the following in standard LP Model form Maximise z = 2x1 + 3x2 + 5x3 subject to x1 + x2 – x3  -5 -6x1 + 7x2 –9x3  4 x1 + x2 + 4 x3 = 10 x1, x2  0 x3 unrestricted SIMPLEX METHOD

Solution The first constraint has a negative RHS, which needs to be converted to positive by multiplying both sides by –1. After this the equality becomes < type and hence we have to add a slack variable to first equation. Add slack s2 to second constraint No change in third equation. Substitute unrestricted x3 = x3+ - x3- in the objective and all constraints. x3+ & x3- > 0. -x1 – x2 + x3+ - x3- + s1 = 5 SIMPLEX METHOD

Standard Form Maximise Subject to z = 2x1 + 3x2 + 5x3+ - 5x3- -x1 – x2 + x3+ - x3- + s1 = 5 - 6x1 + 7x2 - 9x3+ + 9x3- + s2 = 4 x1 + x2 + 4x3+ - 4x3- = 10 x1, x2, x3+ & x3- , s1, s2 0 SIMPLEX METHOD

STEPS IN SIMPLEX Formulation of the mathematical model. Introduction of slack, surplus and artificial variable. Set up initial solution. Look for the basis matrix whose only principal diagonal elements are present. Test for optimality Select entering variable Select the leaving variable. Finding new solution Repeat the procedure SIMPLEX METHOD

Testing for Optimality Calculate cj-zj for all non-basic variables. To obtain value of zj, multiply each element under (column aj of coefficient matrix) with corresponding element (coefficient of basic variables). Examine value of cj – zj. The possible solutions are If all cj – zj are 0, then the BFS is optimal. If at least one column of the coefficient matrix (ak) for which ck – zk >0 and all elements are negative (aik<0), then there exists an unbounded solution to the given problem. If at least one cj – zj > 0 and each of these has at least one positive element (ajk) for some row, then it indicates that an improvement in the value of objective function Z is possible. SIMPLEX METHOD

Test for Entering & Leaving Variable In case of step III of optimality test, then select the variable that has the largest cj-zj value to enter into the solution. ck – zk = Max {(cj-zj); cj-zj >0} Column to be entered is called key or pivot column Test for leaving variable – The basic variable that leaves shall be the one which reaches zero early when the entering variable is increased. Mathematically the replacement ratio is selected as the minimum non-negative ratio of solution variable divided by the key column element. SIMPLEX METHOD

Finding new Solution Deploy Gauss Elimination method to make the key element as 1. Other elements of the key column, other than key element, are eliminated. We will again get a canonical form LP with new basic variable included. Again test the new solution for optimality and repeat till optimal solution is reached. SIMPLEX METHOD

EXAMPLE SIMPLEX METHOD

INITIAL STEPS SIMPLEX METHOD

Check for Optimality entering variable leaving variable Since all cj – zj > 0, j = 1, 2 &3, the current solution is not optimal SIMPLEX METHOD

Entering & Leaving Variable Variable x2 is chosen as entering variable as c2 – z2 is the largest positive number. The value of z will increase by 5 for every unit of x2. Thus contribution of x2 is more. Thus x2 is the key column. The leaving variable is chosen based on the minimum ratio as discussed. This means that as x2 is increased which variable approaches zero very fast. We see that s1 is minimum and hence leaving variable is s1 SIMPLEX METHOD

Finding New Rows SIMPLEX METHOD

New Tableau We see from above table that the new entering variable is x3 and the leaving variable is s2. We repeat the iterations SIMPLEX METHOD

Next Iteration SIMPLEX METHOD

Next Iteration SIMPLEX METHOD

Check for Optimality Notice that all cj – zj are zero. Hence the optimal solution is reached. The optimal value of z is 18.659 The values of decision variables are x1 = 2.171 x2 = 1.22 x3 = 1.522 SIMPLEX METHOD

Basic Feasible Solution Every basic feasible solution of a linear program in standard form is a corner point solution, and vice versa SIMPLEX METHOD

Simplex Steps ( Max Problem) Step 0. The problem is in canonical form and bj ≥0. Step 1. If cj – zj < 0 then stop. The solution is optimal. Step 2. Choose any non-basic variable to pivot in with cj-zj > 0, e.g., ck – zk = max { (cj –zj); cj – zj > 0 }. If aik≤0 for all i, then stop; the LP is unbounded. Step 3. Pivot out the basic variable in row r, where r is chosen by the min ratio rule, that is r = min(xbi/arj:arj> 0 ). Step 4. Replace the basic variable in row r with variable xr and re-establish canonical form (i.e., pivot on the coefficient ) Step 5. Go to Step 1. SIMPLEX METHOD