Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J

Slides:



Advertisements
Similar presentations
Superconductors. Gor’kov and Eliashberg found the time- dependent G-L equations using microscopic theory: These equations are solved numerically Model.
Advertisements

Lecture 15. Phases of Pure Substances (Ch.5) Up to now we have dealt almost exclusively with systems consisting of a single phase. In this lecture, we.
The Continuing Role of SRF for AARD: Issues, Challenges and Benefits SRF performance has been rising every decade SRF installations for HEP (and other.
Superconducting Materials R&D: RRCAT-JLAB Collaboration S B Roy Materials & Advanced Accelerator Science Division RRCAT, Indore Collaborators: M. K. Chattopadhyay,
I)Detailed information specifically relating to the section on superconductivity. Some of this information will be needed for the tutorial work.
1 In a vortex system a force applied on a vortex by all the others can be written within London appr. as a sum: IV. FLUX LINE LATTICE The total energy.
1 Most of the type II superconductors are anisotropic. In extreme cases of layered high Tc materials like BSCCO the anisotropy is so large that the material.
RF Superconductivity and the Superheating Field H sh James P. Sethna, Gianluigi Catelani, and Mark Transtrum Superconducting RF cavity Lower losses Limited.
Interfacial transport So far, we have considered size and motion of particles In above, did not consider formation of particles or transport of matter.
B.Spivak with A. Zuyzin Quantum (T=0) superconductor-metal? (insulator?) transitions.
1 A. Derivation of GL equations macroscopic magnetic field Several standard definitions: -Field of “external” currents -magnetization -free energy II.
Beyond Zero Resistance – Phenomenology of Superconductivity Nicholas P. Breznay SASS Seminar – Happy 50 th ! SLAC April 29, 2009.
Superconductivity and Superfluidity The London penetration depth but also F and H London suggested that not only To which the solution is L is known as.
Fluctuation conductivity of thin films and nanowires near a parallel-
Entropy localization and distribution in the Hawking radiation Horacio Casini CONICET-Intituto Balseiro – Centro Atómico Bariloche.
Reduced magnetic moment of the 3.86 µm thick In sample in perpendicular field, H ci is the critical field of the transition from the intermediate to the.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
Lecture 12: Domains, nucleation and coarsening Outline: domain walls nucleation coarsening.
Type I and Type II superconductivity
Michael Browne 11/26/2007.
RF breakdown in multilayer coatings: a possibility to break the Nb monopoly Alex Gurevich National High Magnetic Field Laboratory, Florida State University.
Numerical Ginzburg-Landau studies of J c in 2D and 3D polycrystalline superconductors G.J.Carty and D P Hampshire Superconductivity Group, Department of.
Group 6 / A RF Test and Properties of a Superconducting Cavity Mattia Checchin, Fabien Eozénou, Teresa Martinez de Alvaro, Szabina Mikulás, Jens Steckert.
CERN Accelerator School Superconductivity for Accelerators Case study 5 Group: Be Free Vicky Bayliss Mariusz Juchno Masami Iio Felix Elefant Erk Jensen.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Phonons Packets of sound found present in the lattice as it vibrates … but the lattice vibration cannot be heard. Unlike static lattice model , which.
Superconductivity. Work on Worksheets. Superconductivity Lecture
Vortex Solution in Holographic Two-Band Superconductor
Advances in Development of Diffused Nb3Sn Cavities at Cornell
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Superconductivity and Superfluidity Flux line motion In principlea Type II superconductor should be “better” than a Type I for most applications - it remains.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Superconductivity and Superfluidity The Pippard coherence length In 1953 Sir Brian Pippard considered 1. N/S boundaries have positive surface energy 2.
Superconductivity and Superfluidity Landau Theory of Phase Transitions Lecture 5 As a reminder of Landau theory, take the example of a ferromagnetic to.
Chapter 7 in the textbook Introduction and Survey Current density:
Page 1 Jean Delayen Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility SURFACE IMPEDANCE COCKCROFT.
Superconductivity Basics
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
Superconducting RF Materials for Accelerators
Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,
MAGNETIC FIELDS IN MATTER
Dipole magnets A dipole magnet gives a constant B-field.
Ginzburg Landau phenomenological Theory
The London-London equation
Toward a Holographic Model of d-wave Superconductors
COCKCROFT INSTITUTE, DARESBURY
Characterizing thin films by RF and DC methods
Electrical resistance
SUPERCONDUCTING THIN FILMS FOR SRF CAVITIES
Spontaneous Symmetry Breaking and Analogies to the Higgs-Mechanism
Magnetic Properties.
PHY 752 Solid State Physics
Electrical Properties of Materials
Samples muSR studies towards higher accelerating gradients
Materials, Advanced Accelerator Science & Cryogenics Division
Effect of Surface Treatments on the Superconducting Properties of Niobium Presented by A.S.Dhavale Sept. 23, 2010.
Shanghai Jiao Tong University
On magnetization in holographic models
Theoretical Work On Superconductivity Up to 1956* A.J. Leggett
100 YEARS of SUPERCONDUCTIVITY: ANCIENT HISTORY AND CURRENT CHALLENGES
Shanghai Jiao Tong University
Magnetic Properties and Superconductivity
Efrain J. Ferrer Paramagnetism in Compact Stars
Special Topics in Electrodynamics:
Thermodynamics of a Type I superconductor
(Graduation thesis at Nihon University)
Magnetic properties of superconductors
Biointelligence Laboratory, Seoul National University
Special Topics in Electrodynamics:
Ginzburg-Landau theory
Presentation transcript:

Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J. Sethna What is the RF critical magnetic field? Is it Hc1, Hc, Hsh? How does it depend on temperature? How does it depend on Ginzburg-Landau parameter (k = l/x)? High-Field Q-slope (next session) Why does the RF surface resistance of niobium increase sharply at high RF magnetic field?

Quick Review of DC Critical Magnetic fields Internal magnetic field Normal State Meissner State External field Hc

Type I and Type II SC Ginzburg and Landau treated the surface energy associated with a normal/SC phase boundary. Qualitatively, the free energy per unit volume increases by µ0 Ha2 l/2 over the penetration depth (L  due to the diamagnetism; work is done to exclude the magnetic flux and falls by µ0 Hc2 x0 /2 over the coherence length due to the increase of the super-electron density. If the coherence length is smaller than the penetration depth, there is a negative surface energy and it is energetically favorable at equilibrium to have normal/superconducting boundaries… Type II. If x0 > L, there is a positive surface energy and the formation of normal/SC regions is not favorable, Type I

Magnetization vs External Field Hc1, Hc2, Hc Boundary between Type I and Type II defined by G-L parameter k = l/x G-L theory relates Hc1, Hc2 and Hc to k, over a restricted range of k. Hsh is the maximum permissible value of the applied field, which satisfies GL equations. Metastability allows Hsh > Hc1 (or Hc)  = Hc2/√2Hc

Measuring Hc1 and Hc of Nb, 4 Measuring Hc1 and Hc of Nb, 4.2 K from Magnetization Curves Gives questionable results for Hc1 and Hc due to flux pinning, which depends on state of sample DESY

Hc1 and Hc are also difficult to measure because of hysteresis (flux pinning)… Rarely (if ever) do you get a reversible curve

Attempted Magnetization Measurements on NON-Reversible Nb (Saito)

Attempted Determination of k (T)  = Hc2/√2Hc

Superheating Field Hsh is defined as the maximum permissible value of the applied field, which satisfies GL equations. Matricon and Saint-James solved GL equations numerically for the one-dimensional case where half of the space is occupied by a superconductor.

Hsh in RF Fields In RF, fields change rapidly, within nanoseconds. If the time it takes to nucleate fluxoids is long compared to the rf period ( 10 - 9 s) There is a tendency for the meta-stable superconducting state to persist up to Hsh > Hc1. T. Yogi Measured Hsh > Hc1 for Alloys Sn-In and In-Bi over a range of kappa values to show no discontinuity across Type I and Type II

T. Yogi’s Results Nb

T. Hays Measured the RF Critical Field for Superconductors: Nb and Nb3Sn Using High Pulse Power We plan to repeat these measurements with large grain and single crystal cavities (if funded)

Heuristic Arguments to determine Hsh In the process of phase transition, a boundary must be nucleated. In a Type I superconductor, the positive surface energy suggests that, in dc fields, the Meissner state can persist metastably beyond the thermodynamic critical field, up to the superheating field, Hsh. At this field, the surface energy per unit area vanishes: For Type II superconductors, it is also possible for the Meissner state to persist meta-stably above Hc1, How far above Hc1 ? is the open question

Saito extended the energy balance argument to other dimensional forms of nucleation such as a line nucleation (vortex nucleation). The diamagnetic energy is given by and the condensation energy is Balancing the two contributions, the superheating field is Is line nucleation the proper model for the RF critical field, i.e. the superheating field?

Issues with this Energy Balance Approach for H > Hc1 As an energy-balance argument, the vortex nucleation model gives an upper bound on the equilibrium critical field for vortex penetration, which is related to Hc1. Nothing in the energy balance argument discusses meta-stability, which is the key aspect for Hsh The line nucleation model is useful in the context of nucleation on in-homogeneities on the scale of the coherence length, but not as a fundamental limit for uniform, flat, pure superconductors.

Temperature Dependence Saito determines k (T) = Hc2 (T) /√2Hc (T) and Hc(T) from DC magnetic field data This is questionable for two reasons Superheating is a prediction from the Abrikosov, G-L theory, which is a perturbation theory. Therefore it is valid for T ~ Tc or D ~ 0 Non-local effects important at lower temperatures have been shown to introduce large qualitative changes in vortex behavior. Hysteresis (pinning) in magnetization gives unreliable answers for Hc1 and Hc Final problem, Saito introduces Hsh-rf = √2 Hsh-dc ?? This is incorrect for phase transition field

1700 – 1750 Oe Best

Problem If Hrf (0) = 1800 Oe, According to Saito, Hsh (dc) at zero temperature = 1270 Oe which is << Hc1 (known to be 1740 – 1900 Oe) !!

Experimentally Peak RF Magnetic Fields Are Rising Experimentally Peak RF Magnetic Fields Are Rising ! Cavities material and surfaces are getting better !

How to correctly calculate Hsh? Field where barrier vanishes Linear stability analysis will also determine vortex array At large k and T~Tc, 1-D analysis gives Hsh = 0.745 Hc (as discussed) At lower T, we need the Eilenberger equations (Non-local, Green’s functions, …)

Fundamental limits to Hsh in Niobium What can theory tell us? James P. Sethna, Gianluigi Catelani Why a superheating field? How to calculate Hsh? Field where barrier vanishes Linear stability analysis determines nucleation mechanism: vortex array At large k and T~Tc, 1-D analysis Hsh = 0.745 Hc x “Line nucleation” wrong Yogi, Saito Hsh~Hc /k discouraging Via “energy balance”, no barrier calculation Does not work for large k, Hsh < Hc1 = Hc ln(k)/(√2 k) Correct balance theory gives Hc1 not Hsh Barrier L> x Costly core x enters first; gain from field L later

James P. Sethna, Gianluigi Catelani Which Theory? James P. Sethna, Gianluigi Catelani If we trusted Ginsburg-Landau far below Tc, things looks good: Niobium: Hsh ~ 2400 Oe → 63 MV/m Nb3Sn: Hsh ~ 4000 Oe → 110 MV/m But Ginsburg-Landau is only valid near Tc ; RF cavities at 2K << Tc for Nb At lower T, we need the Eilenberger equations (Non-local, Green’s functions, …) Known corrections from G-L: small effects on Hc1, Hc2 huge effect on vortex core (collapse from x to 1/kF) Unknown so far: Effect on Hsh Work proposed & in progress…

Eilenberger/Gorkov for Hsh in Nb James P. Sethna, Gianluigi Catelani Equations of motion for the (anomalous) Green’s functions f(w,n,x) and g(w,n,x) Self-consistent equation for gap D Maxwell equation for H from current Constraint on the Green’s function Matsubara frequencies w and Fermi wavevector direction n Solve 1D ODE for uniform, superconducting state Find 2D instability threshold Hsh (functional eigenvalue crosses zero)