1 Lecture 4: Directory Protocols Topics: directory-based cache coherence implementations.

Slides:



Advertisements
Similar presentations
Cache Coherence. Memory Consistency in SMPs Suppose CPU-1 updates A to 200. write-back: memory and cache-2 have stale values write-through: cache-2 has.
Advertisements

L.N. Bhuyan Adapted from Patterson’s slides
1 Lecture 6: Directory Protocols Topics: directory-based cache coherence implementations (wrap-up of SGI Origin and Sequent NUMA case study)
Cache Optimization Summary
CS 7810 Lecture 19 Coherence Decoupling: Making Use of Incoherence J.Huh, J. Chang, D. Burger, G. Sohi Proceedings of ASPLOS-XI October 2004.
CIS629 Coherence 1 Cache Coherence: Snooping Protocol, Directory Protocol Some of these slides courtesty of David Patterson and David Culler.
CS252/Patterson Lec /23/01 CS213 Parallel Processing Architecture Lecture 7: Multiprocessor Cache Coherency Problem.
1 Lecture 2: Snooping and Directory Protocols Topics: Snooping wrap-up and directory implementations.
EECC756 - Shaaban #1 lec # 13 Spring Scalable Cache Coherent Systems Scalable distributed shared memory machines Assumptions: –Processor-Cache-Memory.
1 Lecture 20: Coherence protocols Topics: snooping and directory-based coherence protocols (Sections )
1 Lecture 3: Snooping Protocols Topics: snooping-based cache coherence implementations.
CS252/Patterson Lec /28/01 CS 213 Lecture 9: Multiprocessor: Directory Protocol.
1 Lecture 5: Directory Protocols Topics: directory-based cache coherence implementations.
1 Lecture 23: Multiprocessors Today’s topics:  RAID  Multiprocessor taxonomy  Snooping-based cache coherence protocol.
NUMA coherence CSE 471 Aut 011 Cache Coherence in NUMA Machines Snooping is not possible on media other than bus/ring Broadcast / multicast is not that.
EECC756 - Shaaban #1 lec # 12 Spring Scalable Cache Coherent Systems Scalable distributed shared memory machines Assumptions: –Processor-Cache-Memory.
1 Lecture 3: Directory-Based Coherence Basic operations, memory-based and cache-based directories.
CS252/Patterson Lec /28/01 CS 213 Lecture 10: Multiprocessor 3: Directory Organization.
1 Lecture 20: Protocols and Synchronization Topics: distributed shared-memory multiprocessors, synchronization (Sections )
1 Shared-memory Architectures Adapted from a lecture by Ian Watson, University of Machester.
1 Cache coherence CEG 4131 Computer Architecture III Slides developed by Dr. Hesham El-Rewini Copyright Hesham El-Rewini.
Lecture 3. Directory-based Cache Coherence Prof. Taeweon Suh Computer Science Education Korea University COM503 Parallel Computer Architecture & Programming.
Ch4. Multiprocessors & Thread-Level Parallelism 2. SMP (Symmetric shared-memory Multiprocessors) ECE468/562 Advanced Computer Architecture Prof. Honggang.
Computer Science and Engineering Parallel and Distributed Processing CSE 8380 April 5, 2005 Session 22.
Computer Science and Engineering Copyright by Hesham El-Rewini Advanced Computer Architecture CSE 8383 March 20, 2008 Session 9.
1 Lecture 19: Scalable Protocols & Synch Topics: coherence protocols for distributed shared-memory multiprocessors and synchronization (Sections )
1 Lecture: Coherence Topics: snooping-based coherence, directory-based coherence protocols (Sections )
1 Lecture 7: Implementing Cache Coherence Topics: implementation details.
The University of Adelaide, School of Computer Science
1 Lecture 8: Snooping and Directory Protocols Topics: 4/5-state snooping protocols, split-transaction implementation details, directory implementations.
Lecture 8: Snooping and Directory Protocols
תרגול מס' 5: MESI Protocol
Architecture and Design of AlphaServer GS320
Scalable Cache Coherent Systems
Lecture 18: Coherence and Synchronization
Scalable Cache Coherent Systems
CMSC 611: Advanced Computer Architecture
Lecture 9: Directory-Based Examples II
CS5102 High Performance Computer Systems Distributed Shared Memory
Lecture 2: Snooping-Based Coherence
Scalable Cache Coherent Systems
Chip-Multiprocessor.
Lecture 8: Directory-Based Cache Coherence
Lecture 7: Directory-Based Cache Coherence
11 – Snooping Cache and Directory Based Multiprocessors
CS 213 Lecture 11: Multiprocessor 3: Directory Organization
Lecture 25: Multiprocessors
Lecture 9: Directory-Based Examples
Scalable Cache Coherent Systems
Slides developed by Dr. Hesham El-Rewini Copyright Hesham El-Rewini
Lecture 8: Directory-Based Examples
Lecture 25: Multiprocessors
Lecture 17 Multiprocessors and Thread-Level Parallelism
Cache coherence CEG 4131 Computer Architecture III
Lecture 24: Virtual Memory, Multiprocessors
Scalable Cache Coherent Systems
Lecture 23: Virtual Memory, Multiprocessors
Lecture 24: Multiprocessors
Lecture: Coherence Topics: wrap-up of snooping-based coherence,
Scalable Cache Coherent Systems
Coherent caches Adapted from a lecture by Ian Watson, University of Machester.
Lecture 17 Multiprocessors and Thread-Level Parallelism
Lecture 19: Coherence and Synchronization
Lecture 18: Coherence and Synchronization
CSE 486/586 Distributed Systems Cache Coherence
Scalable Cache Coherent Systems
Lecture 10: Directory-Based Examples II
Scalable Cache Coherent Systems
Lecture 17 Multiprocessors and Thread-Level Parallelism
Scalable Cache Coherent Systems
Presentation transcript:

1 Lecture 4: Directory Protocols Topics: directory-based cache coherence implementations

2 Split Transaction Bus What would it take to implement the protocol correctly while assuming a split transaction bus? Split transaction bus: a cache puts out a request, releases the bus (so others can use the bus), receives its response much later Assumptions:  only one request per block can be outstanding  separate lines for addr (request) and data (response)

3 Split Transaction Bus Proc 1 Cache Proc 2 Cache Proc 3 Cache Request lines Response lines

4 Design Issues When does the snoop complete? What if the snoop takes a long time? What if the buffer in a processor/memory is full? When does the buffer release an entry? Are the buffers identical? How does each processor ensure that a block does not have multiple outstanding requests? What determines the write order – requests or responses?

5 Design Issues II What happens if a processor is arbitrating for the bus and witnesses another bus transaction for the same address? If the processor issues a read miss and there is already a matching read in the request table, can we reduce bus traffic?

6 Scalable Multiprocessors P1 C1 Mem 1CA1 P2 C2 Mem 2CA2 Pn Cn Mem nCAn Scalable interconnection network CC NUMA: Cache coherent non-uniform memory access

7 Directory-Based Protocol For each block, there is a centralized “directory” that maintains the state of the block in different caches The directory is co-located with the corresponding memory Requests and replies on the interconnect are no longer seen by everyone – the directory serializes writes P C MemCADir P C MemCADir

8 Definitions Home node: the node that stores memory and directory state for the cache block in question Dirty node: the node that has a cache copy in modified state Owner node: the node responsible for supplying data (usually either the home or dirty node) Also, exclusive node, local node, requesting node, etc. P C MemCADir P C MemCADir

9 Protocol Steps P1 C1 Mem 1CA1 P2 C2 Mem 2CA2 Pn Cn Mem nCAn Scalable interconnection network What happens on a read miss and a write miss? How is information stored in a directory? Dir

10 Directory Organizations Centralized Directory: one fixed location – bottleneck! Flat Directories: directory info is in a fixed place, determined by examining the address – can be further categorized as memory-based or cache-based Hierarchical Directories: the processors are organized as a logical tree structure and each parent keeps track of which of its immediate children has a copy of the block – less storage (?), more searching, can exploit locality

11 Flat Memory-Based Directories Directory is associated with memory and stores info for all cache copies A presence vector stores a bit for every processor, for every memory block – the overhead is a function of memory/block size and #processors Reducing directory overhead:

12 Flat Memory-Based Directories Directory is associated with memory and stores info for all cache copies A presence vector stores a bit for every processor, for every memory block – the overhead is a function of memory/block size and #processors Reducing directory overhead:  Width: pointers (keep track of processor ids of sharers) (need overflow strategy), 2-level protocol to combine info for multiple processors  Height: increase block size, track info only for blocks that are cached (note: cache size << memory size)

13 Flat Cache-Based Directories The directory at the memory home node only stores a pointer to the first cached copy – the caches store pointers to the next and previous sharers (a doubly linked list) Main memory Cache 7Cache 3Cache 26

14 Flat Cache-Based Directories The directory at the memory home node only stores a pointer to the first cached copy – the caches store pointers to the next and previous sharers (a doubly linked list) Potentially lower storage, no bottleneck for network traffic, Invalidates are now serialized (takes longer to acquire exclusive access), replacements must update linked list, must handle race conditions while updating list

15 Data Sharing Patterns Two important metrics that guide our design choices: invalidation frequency and invalidation size – turns out that invalidation size is rarely greater than four Read-only data: constantly read, never updated (raytrace) Producer-consumer: flag-based synchronization, updates from neighbors (Ocean) Migratory: reads and writes from a single processor for a period of time (global sum) Irregular: unpredictable accesses (distributed task queue)

16 Protocol Optimizations C1C2 Mem C1C2 Mem C1C2 Mem Intervention Forwarding Reply Forwarding Request Response C1 attempts to read a block that is in Modified state in C2

17 Serializing Writes for Coherence Potential problems: updates may be re-ordered by the network; General solution: do not start the next write until the previous one has completed Strategies for buffering writes:  buffer at home: requires more storage at home node  buffer at requestors: the request is forwarded to the previous requestor and a linked list is formed  NACK and retry: the home node nacks all requests until the outstanding request has completed

18 Title Bullet